Reported in this paper is a quantum mechanics study on the electronic structure and contact resistance at the interfaces formed when an open-end single-walled carbon nanotube (CNT) is in end-contact with aluminum (Al) and palladium (Pd), respectively. The electronic structures are computed using a density functional theory (DFT), and the transmission coefficient is calculated using a nonequilibrium Green’s function (NEGF) in conjunction with the DFT. The current–voltage relation of the simulating cell is obtained by using the Landauer–Buttiker formula, from which the contact resistance can be determined. Our results show that the electronic structure and electron transport behavior are strongly dependent on the electrode. It is found that the CNT/Pd interface has a weaker bond than the CNT/Al interface. However, the CNT/Pd interface shows a lower electrical contact resistance.

References

References
1.
Rueckes
,
T.
,
Kim
,
K.
,
Joselevich
,
E.
,
Tseng
,
G. Y.
,
Cheung
C. L.
, and
Lieber
C. M.
, 2000, “
Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing
,”
Science
,
289
, pp.
94
97
.
2.
Zhu
,
W. G.
, and
Kaxiras
,
E.
, 2006, “
The Nature of Contact Between Pd Leads and Semiconducting Carbon Nanotubes
,”
Nano Lett.
,
6
, pp.
1415
1419
.
3.
Dag
,
S.
,
Gulseren
,
O.
,
Ciraci
,
S.
, and
Yildirim
,
T.
, 2003, “
Electronic Structure of the Contact Between Carbon Nanotube and Metal Electrodes
,”
Appl. Phys. Lett.
,
83
, pp.
3180
3182
.
4.
Matsuda
,
Y.
,
Deng
,
W.-Q.
, and
Goddard
,
W. A.
, 2007, “
Contact Resistance Properties Between Nanotubes and Various Metals From Quantum Mechanics
,”
J. Phys. Chem. C
,
111
, pp.
11113
11116
.
5.
Matsuda
,
Y.
,
Deng
,
W.-Q.
, and
Goddard
,
W. A.
, 2008, “
Improving Contact Resistance at the Nanotube-Cu Electrode Interface Using Molecular Anchors
,”
J. Phys. Chem. C
,
112
, pp.
11042
11049
.
6.
Meng
,
T. Z.
,
Wang
,
C.-Y.
, and
Wang
,
S.-Y.
, 2007, “
First-Principle Study of Contact Between Ti Surface and Semiconducting Carbon Nanotube
,”
J. Appl. Phys.
,
102
, p.
013709
.
7.
Park
,
N.
, and
Hong
,
S.
, 2005, “
Electronic Structure Calculations of Metal-Nanotube Contacts With or Without Oxygen Adsorption
,”
Phys. Rev. B
,
72
, p.
048408
.
8.
Andriotis
,
A. N.
, and
Menon
,
M.
, 2007, “
Structural and Conducting Properties of Metal Carbon-Nanotube Contacts: Extended Molecule Approximation
,”
Phys. Rev. B
,
76
, p.
045412
.
9.
Andriotis
,
A. N.
, and
Menon
,
M.
, 2008, “
Electronic Transport in Metal-Soldered Carbon-Nanotube Multiterminal Junctions
,”
Phys. Rev. B
,
78
, p.
235415
.
10.
Zhu
,
L.
,
Hess
,
D. W.
, and
Wong
,
C. P.
, 2006, “
In-Situ Opening Aligned Carbon Nanotubes and Applications for Device Assembly and Filed Emission
,”
Proceedings of 2006 Optics Valley of China International Optoelectronic Exposition and Forum
, pp.
12
18
.
11.
Palacios
,
J. J.
,
Perez-Jimenez
,
A. J.
,
Louis
,
E.
,
SanFabian
,
E.
, and
Verges
,
J. A.
, 2003, “
First-Principle Phase-Coherent Transport in Metallic Nanotubes With Realistic Contacts
,”
Phys. Rev. Lett.
,
90
, p.
106801
.
12.
Taylor
,
J.
,
Guo
,
H.
, and
Wang
,
J.
, 2001, “
Ab Initio Modeling of Quantum Transport Properties of Molecular Electronic Devices
,”
Phys. Rev. B
,
63
, p.
245407
.
13.
Odbadrakh
,
K.
,
Pomorski
,
P.
, and
Roland
,
C.
, 2006, “
Ab initio Band Bending, Metal-Induced Gap States, and Schottky Barriers of a Carbon and a Boron Nitride Nanotube Device
,”
Phys. Rev. B
,
73
, p.
223402
.
14.
Gompernolle
,
S.
,
Pourtois
,
G.
,
Soree
,
B.
,
Magnus
,
W.
,
Chibotar
,
L. F.
, and
Ceulemans
,
A.
, 2008, “
Conductance of a Copper-Nanotube Bundle Interface: Impact of Interface Geometry and Wave-Function Interference
,”
Phys. Rev. B
,
77
, p.
193406
.
15.
Pomorski
,
P.
,
Roland
,
C.
, and
Guo
,
H.
, 2004, “
Quantum Transport Through Short Semiconducting Nanotubes: A Complex Band Structure Analysis
,”
Phys. Rev. B
,
70
, p.
115408
.
16.
Gao
,
F.
,
Qu
,
J.
, and
Yao
,
M.
, 2010, “
Electronic Structure and Contact Resistance at an Open-End CNT and Copper Interface
,”
Appl. Phys. Lett.
,
96
, p.
102108
.
17.
ATK Toolkit, 2008. 10 version, www.quantumwise.comwww.quantumwise.com.
18.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
, 1996, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
77
, pp.
3865
3868
.
19.
Datta
,
S.
, 2005,
Quantum Transport: Atom to Transistor
,
Cambridge University Press
,
Cambridge, UK
.
20.
Glassey
,
W. V.
, and
Hoffmann
,
R.
, 2000, “
A Comparative Study of Hamilton and Overlap Population Methods for the Analysis of Chemical Bonding
,”
J. Chem. Phys.
,
113
, pp.
1698
1704
.
21.
Greenwood
,
N. N.
, and
Earnshaw
,
A.
, 1997,
Chemistry of the Elements
,
2nd ed.
,
Butterworth-Heinemann
,
Oxford
.
22.
Yam
,
C. Y.
,
Mo
,
Y.
,
Wang
,
F.
,
Li
,
X. B.
,
Chen
,
G. H.
,
Zheng
,
X.
,
Matsuda
,
Y.
,
Tahir-Kheli
,
J.
, and
Goddard
,
W. A.
, 2008, “
Dynamic Admittance of Carbon Nanotube-Based Molecular Electronic Devices and Their Equivalent Electric Circuit
,”
Nanotechnology
,
19
, p.
495203
.
You do not currently have access to this content.