Carbon nanotube (CNT) arrays can be effective thermal interface materials with high compliance and conductance over a wide temperature range. Here, we study CNT interface structures in which free CNT ends are bonded using Pd hexadecanethiolate, Pd(SC16H35)2, to an opposing substrate (one-sided interface) or opposing CNT array (two-sided interface) to enhance contact conductance while maintaining a compliant joint. The Pd weld is particularly attractive for its mechanical stability at high temperatures. A transient photoacoustic (PA) method is used to measure the thermal resistance of the palladium-bonded CNT interfaces. The interfaces were bonded at moderate pressures and then tested at 34 kPa using the PA technique. At an interface temperature of approximately 250°C, one-sided and two-sided palladium-bonded interfaces achieved thermal resistances near 10 mm2 K/W and 5 mm2 K/W, respectively.

References

1.
Prasher
,
R.
, 2006, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
2.
Biercuk
,
M. J.
,
Llanguno
,
M. C.
,
Radosavlievic, Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
,
80
(
15
), pp.
2767
2769
.
3.
Panzer
,
M. A.
,
Zhang
,
G.
,
Mann
,
D.
,
Hu
,
X.
,
Pop
,
E.
,
Dai
,
H.
, and
Goodson
,
K. E.
, 2008, “
Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays
,”
ASME J. Heat Transfer
,
130
, p.
052401
.
4.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006, “
Enhanced Thermal Contact Conductance using Carbon Nanotube Array Interfaces
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
2
), pp.
261
267
.
5.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1658
1666
.
6.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
, 2007, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.
7.
Hu
,
X.
,
Pan
,
L. S.
,
Gu
,
G.
, and
Goodson
,
K. E.
, 2009, “
Superior Thermal Interfaces Made by Metallically Anchored Carbon Nanotube Arrays
,”
Proceedings of ASME Summer Heat Transfer Conference
,
San Francisco, CA
.
8.
Cola
,
B. A.
,
Hu
,
J.
,
Cheng
,
C.
,
Hu
,
H.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Photoacoustic Characterization of Carbon Nanotube Array Interfaces
,”
J. Appl. Phys.
,
101
(
5
), p.
054313
.
9.
Cola
,
B. A.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material
,”
Appl. Phys. Lett.
,
90
(
9
), p.
093513
.
10.
Cola
,
B. A.
,
Hodson
,
S. L.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2008, “
Carbon Nanotube Array Thermal Interfaces Enhanced with Paraffin Wax
,”
Proceedings of ASME Summer Heat Transfer Conference
,
Jacksonville, FL
.
11.
Cola
,
B. A.
,
Capano
,
M. A.
,
Amama
,
P. B.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2008, “
Carbon Nanotube Array Thermal Interfaces for High-Temperature Silicon Carbide Devices
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
3
), pp.
228
237
.
12.
Frank
,
S.
,
Poncharal
,
P.
,
Wang
,
Z. L.
, and
de Heer
,
W. A.
, 1998, “
Carbon Nanotube Quantum Resistors
,”
Science
,
280
(5370), pp.
1744
1746
.
13.
Ngo
,
Q.
,
Petranovic
,
D.
,
Krishnan
,
S.
,
Cassell
,
A. M.
,
Ye
,
Q.
,
Li
,
J.
,
Meyyappan
,
M.
, and
Yang
,
C. Y.
, 2004, “
Electron Transport Through Metal-Multiwall Carbon Nanotube Interfaces
,”
IEEE Trans. Nanotechnol.
,
3
(
2
), pp.
311
317
.
14.
Mann
,
D.
,
Javey
,
A.
,
Kong
,
J.
,
Wang
,
Q.
, and
Dai
,
H.
, 2003, “
Ballistic Transport in Metallic Nanotubes With Reliable Pd Ohmic Contacts
,”
Nano Lett.
,
3
(
11
), pp.
1541
1544
.
15.
Matsuda
,
Y.
,
Deng
,
W.
, and
Goddard
,
W. A.
, 2007, “
Contact Resistance Properties Between Nanotubes and Various Metals from Quantum Mechanics
,”
J. Phys. Chem. C
,
111
(
29
), pp.
11113
11116
.
16.
Lin
,
Y.
,
Watson
,
K. A.
,
Fallbach
,
M. J.
,
Ghose
,
S.
,
Smith
,
J. G.
, Jr.
,
Delozier
,
D.
,
Cao
,
W.
,
Crooks
,
R. E.
, and
Connell
,
J. W.
, 2009, “
Rapid, Solventless, Bulk Preparation of Metal Nanoparticle-Decorated Carbon Nanotubes
,”
ACS Nano
,
3
(
4
), pp.
871
884
.
17.
Wildgoose
,
G. G.
,
Banks
,
C. E.
, and
Compton
,
R. G.
, 2006, “
Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications
,”
Small
,
2
(
2
), pp.
182
193
.
18.
Georgakilas
,
V.
,
Gournis
,
D.
,
Tzitzios
,
V.
,
Pasquato
,
L.
,
Guldi
,
D. M.
, and
Prato
,
M.
, 2007, “
Decorating Carbon Nanotubes With Metal or Semiconductor Particles
,”
J. Mater. Chem.
,
17
(
26
), pp.
2679
2694
.
19.
Claussen
,
J. C.
,
Franklin
,
A. D.
,
Haque
,
A.
,
Porterfield
,
D. M.
, and
Fisher
,
T. S.
, 2009, “
Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks
,”
ACS Nano
,
3
(
1
), pp.
37
44
.
20.
Voggu
,
R.
,
Pal
,
S.
,
Pati
,
S. K.
, and
Rao
,
C. N. R.
, 2008, “
Semiconductor to Metal Transition in SWNTs Caused by Interaction With Gold and Platinum Nanoparticles
,”
J. Phys.-Condens. Matter
,
20
(
21
), p.
215211
.
21.
Javey
,
A.
,
Guo
,
J.
,
Wang
,
Q.
,
Lundstrom
,
M.
, and
Dai
,
H.
, 2003, “
Ballistic Carbon Nanotube Field-Effect Transistors
,”
Nature
,
424
(6949), pp.
654
657
.
22.
Nemec
,
N.
,
Tomanek
,
D.
, and
Cuniberti
,
G.
, 2006, “
Contact Dependence of Carrier Injection in Carbon Nanotubes: An Ab Initio Study
,”
Phys. Rev. Lett.
,
96
(
7
), p.
076802
.
23.
Carotenuto
,
G.
, and
Martorana
,
B.
, 2003, “
A Universal Method for the Synthesis of Metal and Metal Sulfide Clusters Embedded in Polymer Matrices
,”
J. Mater. Chem.
,
13
(
12
), pp.
2927
2930
.
24.
Thomas
,
P. J.
,
Lavanya
,
A.
,
Sabareesh
,
V.
, and
Kulkarni
,
G. U.
, 2001, “
Self-Assembling Bi-Layers of Palladium Thiolates in Organic Media
,”
Proc. Indian Acad. Sci.-Chem. Sci.
,
113
(
5–6
), pp.
611
619
.
25.
Bhuvana
,
T.
, and
Kulkarni
,
G. U.
, 2008, “
Highly Conducting Patterned Pd Nanowires by Direct-Write Electron Beam Lithography
,”
ACS Nano
,
2
(
3
), pp.
457
462
.
26.
Maschmann
,
M. R.
,
Amama
,
P. B.
,
Goyal
,
A.
,
Iqbal
,
Z.
,
Gat
,
R.
, and
Fisher
,
T. S.
, 2006, “
Parametric Study of Synthesis Conditions in Plasma-Enhanced CVD of High-Quality Single-Walled Carbon Nanotubes
,”
Carbon
,
44
(
1
), pp.
10
18
.
27.
Zoval
,
J. V.
,
Biernacki
,
P. R.
, and
Penner
,
R. M.
, 1996, “
Implementation of Electrochemically Synthesized Silver Nanocrystallites for Preferential SERS Enhancement of Defect Modes on Thermally Etched Graphite Surfaces
,”
Anal. Chem.
,
68
(
9
), pp.
1585
1592
.
28.
Cola
,
B. A.
,
Xu
,
J.
, and
Fisher
,
T. S.
, 2009, “
Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3490
3503
.
29.
Tersoff
,
J.
, 1999, “
Contact Resistance of Carbon Nanotubes
,”
Appl. Phys. Lett.
,
74
(
15
), pp.
2122
2124
.
30.
Anantram
,
M. P.
,
Datta
,
S.
, and
Xue
,
Y.
, 2000, “
Coupling of Carbon Nanotubes to Metallic Contacts
,”
Phys. Rev. B
,
61
(
20
), p.
14219
14224
.
31.
Matthews
,
K.
,
Cruden
,
B. A.
,
Chen
,
B.
,
Meyyappan
,
M.
, and
Delzeit
,
L.
, 2002, “
Plasma-Enhanced Chemical Vapor Deposition of Multiwalled Carbon Nanofibres
,”
J. Nanosci. Nanotechnol.
,
2
(
5
), pp.
475
480
.
32.
Amama
,
P. B.
,
Cola
,
B. A.
,
Sands
,
T. D.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Dendrimer-Assisted Controlled Growth of Carbon Nanotubes for Enhanced Thermal Interface Conductance
,”
Nanotechnology
,
18
(
38
), p.
385303
.
33.
Delaney
,
P.
, and
Ventra
,
M. D.
, 1999, “
Comment on ‘Contact Resistance of Carbon Nanotubes
,”
Appl. Phys. Lett.
,
75
(
25
), pp.
4028
4029
.
You do not currently have access to this content.