The exceptional electronic, thermal, mechanical, and optical characteristics of carbon nanotubes offer significant improvement in diverse applications such as flexible electronics, energy conversion, and thermal management. We present an overview of recent research on the fabrication, characterization and modeling of carbon nanotube (CNT) networks or ensembles for three emerging applications: thin-film transistors for flexible electronics, interface materials for thermal management and transparent electrodes for organic photovoltaics or light emitting diodes. Results from experimental measurements and numerical simulations to determine the electrical and thermal transport properties and characteristics of carbon nanotube networks and arrays used in the above applications are presented. The roles heterogeneous networks of semiconducting and metallic CNTs play in defining electrical, thermal, and optical characteristics of CNT ensembles are presented. We conclude with discussions on future research directions for electronics and packaging materials based on CNT ensembles.

References

References
1.
Cao
,
Q.
, and
Rogers
,
J. A.
, 2009, “
Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects
,”
Adv. Mater.
,
21
(
1
), pp.
29
53
.
2.
Pop
,
E.
,
Mann
,
D.
,
Wang
,
Q.
,
Goodson
,
K.
, and
Dai
,
H. J.
, 2006, “
Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature
,”
Nano Lett.
,
6
(
1
), pp.
96
100
.
3.
Lukes
,
J. R.
, and
Zhong
,
H. L.
, 2007, “
Thermal Conductivity of Individual Single-Wall Carbon Nanotubes
,”
ASME J. Heat Transfer-Trans.
,
129
(
6
), pp.
705
716
.
4.
Zhou
,
X. J.
,
Park
,
J. Y.
,
Huang
,
S. M.
,
Liu
,
J.
, and
Mceuen
,
P. L.
, 2005, “
Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors
,”
Phys. Rev. Lett.
,
95
(
14
), p.
146805
.
5.
Khang
,
D. Y.
,
Xiao
,
J. L.
,
Kocabas
,
C.
,
Maclaren
,
S.
,
Banks
,
T.
,
Jiang
,
H. Q.
,
Huang
,
Y. Y. G.
, and
Rogers
,
J. A.
, 2008, “
Molecular Scale Buckling Mechanics on Individual Aligned Single-Wall Carbon Nanotubes on Elastomeric Substrates
,”
Nano Lett.
,
8
(
1
), pp.
124
130
.
6.
Novak
,
J. P.
,
Snow
,
E. S.
,
Houser
,
E. J.
,
Park
,
D.
,
Stepnowski
,
J. L.
, and
Mcgill
,
R. A.
, 2003, “
Nerve Agent Detection Using Networks of Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
83
(
19
), pp.
4026
4028
.
7.
Snow
,
E. S.
,
Campbell
,
P. M.
,
Ancona
,
M. G.
, and
Novak
,
J. P.
, 2005, “
High-Mobility Carbon-Nanotube Thin-Film Transistors on a Polymeric Substrate
,”
Appl. Phys. Lett.
,
86
(
3
), p.
033105
.
8.
Snow
,
E. S.
,
Novak
,
J. P.
,
Lay
,
M. D.
,
Houser
,
E. H.
,
Perkins
,
F. K.
, and
Campbell
,
P. M.
, 2004, “
Carbon Nanotube Networks: Nanomaterial for Macroelectronic Applications
,”
J. Vac. Sci. Technol. B
,
22
(
4
), pp.
1990
1994
.
9.
Zhou
,
Y. X.
,
Gaur
,
A.
,
Hur
,
S. H.
,
Kocabas
,
C.
,
Meitl
,
M. A.
,
Shim
,
M.
, and
Rogers
,
J. A.
, 2004, “
P-Channel, N-Channel Thin Film Transistors and P-N Diodes Based on Single Wall Carbon Nanotube Networks
,”
Nano Lett.
,
4
(
10
), pp.
2031
2035
.
10.
Cao
,
Q.
,
Kim
,
H. S.
,
Pimparkar
,
N.
,
Kulkarni
,
J. P.
,
Wang
,
C. J.
,
Shim
,
M.
,
Roy
,
K.
,
Alam
,
M. A.
, and
Rogers
,
J. A.
, 2008, “
Medium-Scale Carbon Nanotube Thin-Film Integrated Circuits on Flexible Plastic Substrates
,”
Nature (London)
,
454
(
7203
), pp.
495
U4
.
11.
Kocabas
,
C.
,
Hur
,
S. H.
,
Gaur
,
A.
,
Meitl
,
M. A.
,
Shim
,
M.
, and
Rogers
,
J. A.
, 2005, “
Guided Growth of Large-Scale, Horizontally Aligned Arrays of Single-Walled Carbon Nanotubes and Their Use in Thin-Film Transistors
,”
Small
,
1
(
11
), pp.
1110
1116
.
12.
Kocabas
,
C.
,
Meitl
,
M. A.
,
Gaur
,
A.
,
Shim
,
M.
, and
Rogers
,
J. A.
, 2004, “
Aligned Arrays of Single-Walled Carbon Nanotubes Generated from Random Networks by Orientationally Selective Laser Ablation
,”
Nano Lett.
,
4
(
12
), pp.
2421
2426
.
13.
Kocabas
,
C.
,
Shim
,
M.
, and
Rogers
,
J. A.
, 2006, “
Spatially Selective Guided Growth of High-Coverage Arrays and Random Networks of Single-Walled Carbon Nanotubes and Their Integration into Electronic Devices
,”
J. Am. Chem. Soc.
,
128
(
14
), pp.
4540
4541
.
14.
Reuss
,
R. H.
,
Chalamala
,
B. R.
,
Moussessian
,
A.
,
Kane
,
M. G.
,
Kumar
,
A.
,
Zhang
,
D. C.
,
Rogers
,
J. A.
,
Hatalis
,
M.
,
Temple
,
D.
,
Moddel
,
G.
,
Eliasson
,
B. J.
,
Estes
,
M. J.
,
Kunze
,
J.
,
Handy
,
E. S.
,
Harmon
,
E. S.
,
Salzman
,
D. B.
,
Woodall
,
J. M.
,
Alam
,
M. A.
,
Murthy
,
J. Y.
,
Jacobsen
,
S. C.
,
Olivier
,
M.
,
Markus
,
D.
,
Campbell
,
P. M.
, and
Snow
,
E.
, 2005, “
Macroelectronics: Perspectives on Technology and Applications
,”
Proc. IEEE
,
93
(
7
), pp.
1239
1256
.
15.
Snow
,
E. S.
,
Novak
,
J. P.
,
Campbell
,
P. M.
, and
Park
,
D.
, 2003, “
Random Networks of Carbon Nanotubes as an Electronic Material
,”
Appl. Phys. Lett.
,
82
(
13
), pp.
2145
.
16.
Snow
,
E. S.
,
Perkins
,
F. K.
,
Houser
,
E. J.
,
Badescu
,
S. C.
, and
Reinecke
,
T. L.
, 2005, “
Chemical Detection with a Single-Walled Carbon Nanotube Capacitor
,”
Science
,
307
(
5717
), pp.
1942
1945
.
17.
Arico
,
A. S.
,
Bruce
,
P.
,
Scrosati
,
B.
,
Tarascon
,
J. M.
, and
Van Schalkwijk
,
W.
, 2005, “
Nanostructured Materials for Advanced Energy Conversion and Storage Devices
,”
Nature Mater.
,
4
(
5
), pp.
366
377
.
18.
Hur
,
S. H.
,
Kocabas
,
C.
,
Gaur
,
A.
,
Park
,
O. O.
,
Shim
,
M.
, and
Rogers
,
J. A.
, 2005, “
Printed Thin-Film Transistors and Complementary Logic Gates That Use Polymer-Coated Single-Walled Carbon Nanotube Networks
,”
J. Appl. Phys.
,
98
(
11
), p.
114302
.
19.
Prasher
,
R.
, 2006, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
20.
Che
,
J.
,
Cagin
,
T.
, and
Iii
,
W. A. G.
, 2000, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
,
2
, pp.
65
69
.
21.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tománek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
20
), pp.
4613
4616
.
22.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
,
80
(
15
), pp.
2767
2769
.
23.
Prasher
,
R.
, 2007, “
Thermal Conductance of Single-Walled Carbon Nanotube Embedded in an Elastic Half-Space
,”
Appl. Phys. Lett.
,
90
(
14
), p.
143110
.
24.
Cola
,
B. A.
,
Fisher
,
T. S.
, and
Xu
,
X.
, 2009,
Carbon Nanotubes: New Research
,
Nova Science Publishers
,
New York
.
25.
Hu
,
X. J.
,
Padilla
,
A. A.
,
Xu
,
J.
,
Fisher
,
T. S.
, and
Goodson
,
K. E.
, 2006, “
3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1109
1113
.
26.
Yang
,
D. J.
,
Zhang
,
Q.
,
Chen
,
G.
,
Yoon
,
S. F.
,
Ahn
,
J.
,
Wang
,
S. G.
,
Zhou
,
Q.
,
Wang
,
Q.
, and
Li
,
J. Q.
, 2002, “
Thermal Conductivity of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
66
(
16
), p.
165440
.
27.
Hone
,
J.
,
Llaguno
,
M. C.
,
Nemes
,
N. M.
,
Johnson
,
A. T.
,
Fischer
,
J. E.
,
Walters
,
D. A.
,
Casavant
,
M. J.
,
Schmidt
,
J.
, and
Smalley
,
R. E.
, 2000, “
Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films
,”
Appl. Phys. Lett.
,
77
(
5
), pp.
666
668
.
28.
Cola
,
B. A.
,
Capano
,
M. A.
,
Amama
,
P. B.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2008, “
Carbon Nanotube Array Thermal Interfaces for High-Temperature Silicon Carbide Devices
,”
Nanoscale Microscale Thermophys. Eng.
,
13
(
3
), pp.
228
237
.
29.
Zhang
,
D.
,
Ryu
,
K.
,
Liu
,
X.
,
Polikarpov
,
E.
,
Ly
,
J.
,
Tompson
,
M. E.
, and
Zhou
,
C.
, 2006, “
Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes
,”
Nano Lett.
,
6
(
9
), pp.
1880
1886
.
30.
Pasquier
,
A. D.
,
Unalan
,
H. E.
,
Kanwal
,
A.
,
Miller
,
S.
, and
Chhowalla
,
M.
, 2005, “
Conducting and Transparent Single-Wall Carbon Nanotube Electrodes for Polymer-Fullerene Solar Cells
,”
Appl. Phys. Lett.
,
87
(
20
), pp.
203511
.
31.
Geng
,
H.-Z.
,
Ki
,
K. K.
,
Kang
,
P. S.
,
Young
,
S. L.
,
Chang
,
Y.
, and
Young
,
H. L.
, 2007, “
Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films
,”
J. Am. Chem. Soc.
,
129
(
25
), pp.
7758
7759
.
32.
Gordon
,
R. G.
, 2000, “
Criteria for Choosing Transparent Conductors
,”
MRS Bull.
,
25
(
8
), pp.
52
57
.
33.
Arnold
,
M. S.
,
Suntivich
,
J.
,
Stupp
,
S. I.
, and
Hersam
,
M. C.
, 2008, “
Hydrodynamic Characterization of Surfactant Encapsulated Carbon Nanotubes Using an Analytical Ultracentrifuge
,”
ACS Nano
,
2
(
11
), pp.
2291
2300
.
34.
Tanaka
,
T.
,
Jin
,
H.
,
Miyata
,
Y.
,
Fujii
,
S.
,
Suga
,
H.
,
Naitoh
,
Y.
,
Minari
,
T.
,
Miyadera
,
T.
,
Tsukagoshi
,
K.
, and
Kataura
,
H.
, “
Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes
,”
Nano Lett.
,
9
(
4
), pp.
1497
1500
.
35.
Kumar
,
S.
,
Alam
,
M. A.
, and
Murthy
,
J. Y.
, 2006, “
Effect of Percolation on Thermal Transport in Nanotube Composites
,”
Appl. Phys. Lett.
, pp.
104105
.
36.
Kumar
,
S.
,
Alam
,
M. A.
, and
Murthy
,
J. Y.
, 2007, “
Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics
,”
ASME J. Heat Transfer
,
129
, pp.
500
508
.
37.
Kumar
,
S.
,
Blanchet
,
G. B.
,
Hybertsen
,
M. S.
,
Murthy
,
J. Y.
, and
Alam
,
M. A.
, 2006, “
Performance of Carbon Nanotube-Dispersed Thin-Film Transistors
,”
Appl. Phys. Lett.
,
89
(
14
), p.
143501
.
38.
Kumar
,
S.
,
Murthy
,
J. Y.
, and
Alam
,
M. A.
, 2008, “
Electrical and Thermal Transport in Thin-Film Nanotube Composites With Applications to Macroelectronics
,”
Int. J. Nanomanuf.
,
2
(
3
), pp.
226
252
.
39.
Kumar
,
S.
,
Pimparkar
,
N.
,
Murthy
,
J. Y.
, and
Alam
,
M. A.
, 2006, “
Theory of Transfer Characteristics of Nanotube Network Transistors
,”
Appl. Phys. Lett.
,
88
, p.
123505
.
40.
Pimparkar
,
N.
,
Cao
,
Q.
,
Kumar
,
S.
,
Murthy
,
J. Y.
,
Rogers
,
J.
, and
Alam
,
M. A.
, 2007, “
Current-Voltage Characteristics of Long-Channel Nanobundle Thin-Film Transistors: A “Bottom-Up” Perspective
,”
IEEE Electron Device Lett.
,
28
(
2
), pp.
157
160
.
41.
Pimparkar
,
N.
,
Guo
,
J.
, and
Alam
,
M. A.
, 2005, “
Performance Assessment of Sub-Percolating Nanobundle Network Transistors by an Analytical Model
,”
Proceedings. IEDM Technical Digest
, Vol.
21.5
, pp.
541
.
42.
Pimparkar
,
N.
,
Guo
,
J.
, and
Alam
,
M. A.
, 2007, “
Performance Assessment of Subpercolating Nanobundle Network Thin-Film Transistors by an Analytical Model
,”
IEEE Trans. Electron Devices
,
54
(
4
), pp.
637
644
.
43.
Pimparkar
,
N.
,
Kocabas
,
C.
,
Kang
,
S. J.
,
Rogers
,
J.
, and
Alam
,
M. A.
, 2007, “
Limits of Performance Gain of Aligned CNT Over Randomized Network: Theoretical Predictions and Experimental Validation
,”
IEEE Electron Device Lett.
,
28
(
7
), pp.
593
595
.
44.
Kumar
,
S.
,
Murthy
,
J. Y.
, and
Alam
,
M. A.
, 2005, “
Percolating Conduction in Finite Nanotube Networks
,”
Phys. Rev. Lett.
,
95
(
6
),
066802
.
45.
Cola
,
B. A.
,
Xu
,
J.
, and
Fisher
,
T. S.
, 2009, “
Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3490
3503
.
46.
Cola
,
B. A.
,
Amama
,
P. B.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2008, “
Effects of Growth Temperature on Carbon Nanotube Array Thermal Interfaces
,”
ASME J. Heat Transfer
,
130
, p.
114503
.
47.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Xu
,
X.
,
Fisher
,
T. S.
, and
Hu
,
H.
, 2007, “
Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,”
J. Appl. Phys.
,
101
(
5
), p.
054313
.
48.
Cola
,
B. A.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material
,”
Appl. Phys. Lett.
,
90
(
9
), p.
093513
.
49.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006, “
Enhanced Thermal Contact Conductance Using Carbon Nanotube Array Interfaces
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
2
), pp.
261
267
.
50.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006, “
Enhancement of Thermal Interface Materials with Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1658
1666
.
51.
Xu
,
Y.
,
Zhang
,
Y.
,
Suhir
,
E.
, and
Wang
,
X.
, 2006, “
Thermal Properties of Carbon Nanotube Array Used for Integrated Circuit Cooling
,”
J. Appl. Phys.
,
100
(
7
), pp.
074302
.
52.
Hu
,
L.
,
Hecht
,
D. S.
, and
Gruner
,
G.
, 2004, “
Percolation in Transparent and Conducting Carbon Nanotube Networks
,”
Nano Lett.
,
4
(
12
), pp.
2513
2517
.
53.
Meitl
,
M. A.
,
Zhou
,
Y. X.
,
Gaur
,
A.
,
Jeon
,
S.
,
Usrey
,
M. L.
,
Strano
,
M. S.
, and
Rogers
,
J. A.
, 2004, “
Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films
,”
Nano Lett.
,
4
(
9
), pp.
1643
1647
.
54.
Banerjee
,
S.
,
White
,
B. E.
,
Huang
,
L. M.
,
Rego
,
B. J.
,
O’brien
,
S.
, and
Herman
,
I. P.
, 2006, “
Precise Positioning of Single-Walled Carbon Nanotubes by Ac Dielectrophoresis
,”
J. Vac. Sci. Technol.
, pp.
3173
3178
.
55.
Li
,
Y. L.
,
Zhang
,
L. H.
,
Zhong
,
X. H.
, and
Windle
,
A. H.
, 2007, “
Synthesis of High Purity Single-Walled Carbon Nanotubes from Ethanol by Catalytic Gas Flow CVD Reactions
,”
Nanotechnology
,
18
(
22
),
225604
.
56.
Arnold
,
M. S.
,
Green
,
A. A.
,
Hulvat
,
J. F.
,
Stupp
,
S. I.
, and
Hersam
,
M. C.
, 2006, “
Sorting Carbon Nanotubes by Electronic Structure Using Density Differentiation
,”
Nature Nanotechnol.
,
1
, pp.
60
65
.
57.
Lemieux
,
M. C.
,
Roberts
,
M.
,
Barman
,
S.
,
Jin
,
Y. W.
,
Kim
,
J. M.
, and
Bao
,
Z. N.
, 2008, “
Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors
,”
Science
,
321
(
5885
), pp.
101
104
.
58.
Opatkiewicz
,
J.
,
Lemieux
,
M. C.
, and
Bao
,
Z. N.
, “
Nanotubes on Display: How Carbon Nanotubes Can be Integrated into Electronic Displays
,”
ACS Nano
,
4
(
6
), pp.
2975
2978
.
59.
Seidel
,
R. V.
,
Graham
,
A. P.
,
Rajasekharan
,
B.
,
Unger
,
E.
,
Liebau
,
M.
,
Duesberg
,
G. S.
,
Kreupl
,
F.
, and
Hoenlein
,
W.
, 2004, “
Bias Dependence and Electrical Breakdown of Small Diameter Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
6
(
11
), pp.
6694
6699
.
60.
Zhang
,
G.
,
Qi
,
P.
,
Wang
,
X.
,
Lu
,
Y.
,
Li
,
X.
,
Tu
,
R.
,
Bangsaruntip
,
S.
,
Mann
,
D.
,
Zhang
,
L.
, and
Dai
,
H. J.
, 2006, “
Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction
,”
Science
,
314
, pp.
974
977
.
61.
Kim
,
S.
,
Park
,
J.
,
Ju
,
S.
, and
Mohammadi
,
S.
, 2010, “
Fully Transparent Pixel Circuits Driven by Random Network Carbon Nanotube Transistor Circuitry
,”
ACS Nano
,
4
(
6
), pp.
2994
2998
.
62.
Kocabas
,
C.
,
Dunham
,
S.
,
Cao
,
Q.
,
Cimino
,
K.
,
Ho
,
X. N.
,
Kim
,
H. S.
,
Dawson
,
D.
,
Payne
,
J.
,
Stuenkel
,
M.
,
Zhang
,
H.
,
Banks
,
T.
,
Feng
,
M.
,
Rotkin
,
S. V.
, and
Rogers
,
J. A.
, 2009, “
High-Frequency Performance of Submicrometer Transistors That Use Aligned Arrays of Single-Walled Carbon Nanotubes
,”
Nano Lett.
,
9
(
5
), pp.
1937
1943
.
63.
Pike
,
G. E.
, and
Seager
,
C. H.
, 1974, “
Percolation and Conductivity—Computer Study. 1
,”
Phys. Rev. B
,
10
(
4
), pp.
1421
1434
.
64.
Foygel
,
M.
,
Morris
,
R. D.
,
Anez
,
D.
,
French
,
S.
, and
Sobolev
,
V. L.
, 2005, “
Theoretical and Computational Studies of Carbon Nanotube Composites and Suspensions: Electrical and Thermal Conductivity
,”
Phys. Rev. B
,
71
(
10
), pp.
104201
.
65.
Frank
,
D. J.
, and
Lobb
,
C. J.
, 1988, “
Highly Efficient Algorithm for Percolative Transport Studies in 2 Dimensions
,”
Phys. Rev. B
,
37
(
1
), pp.
302
307
.
66.
Lobb
,
C. J.
, and
Frank
,
D. J.
, 1984, “
Percolative Conduction and the Alexander-Orbach Conjecture in 2 Dimensions
,”
Phys. Rev. B
,
30
(
7
), pp.
4090
4092
.
67.
Topinka
,
M. A.
,
Rowell
,
M. W.
,
Goldhaber-Gordon
,
D.
,
Mcgehee
,
M. D.
,
Hecht
,
D. S.
, and
Gruner
,
G.
, 2009, “
Charge Transport in Interpenetrating Networks of Semiconducting and Metallic Carbon Nanotubes
,”
Nano Lett.
,
9
(
5
), pp.
1866
1871
.
68.
Bo
,
X. Z.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Goldfinger
,
M.
,
Nuckolls
,
C.
, and
Blanchet
,
G. B.
, 2005, “
Carbon Nanotubes-Semiconductor Networks for Organic Electronics: The Pickup Stick Transistor
,”
Appl. Phys. Lett.
,
86
(
18
), p.
182102
.
69.
Kumar
,
S.
,
Pimparkar
,
N.
,
Murthy
,
J. Y.
, and
Alam
,
M. A.
, 2011, “
Self-Consistent Electro-Thermal Analysis of Nanotube Network Transistors
,”
J. Appl. Phys.
,
109
, p.
014315
.
70.
Amama
,
P. B.
,
Cola
,
B. A.
,
Sands
,
T. D.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Dendrimer-Assisted Controlled Growth of Carbon Nanotubes for Enhanced Thermal Interface Conductance
,”
Nanotechnology
,
38
, pp.
385303
.
71.
Chuang
,
H. F.
,
Cooper
,
S. M.
,
Meyyappan
,
M.
, and
Cruden
,
B. A.
, 2004, “
Improvement of Thermal Contact Resistance by Carbon Nanotubes and Nanofibers
,”
J. Nanosci. Nanotechnol.
,
4
(
8
), pp.
964
967
.
72.
Cola
,
B. A.
,
Hodson
,
S. L.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2008, “
Carbon Nanotube Array Thermal Interfaces Enhanced With Paraffin Wax
,”
Proceedings of ASME Summer Heat Transfer Conference
,
Jacksonville, FL
.
73.
Cola
,
B. A.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Aluminum Foil/Carbon Nanotube Thermal Interface Materials
,”
Proceedings of ASME/JSME Thermal Engineering Summer Heat Transfer
,
Vancouver, BC, Canada
, Vol.
2
, pp.
901
903
.
74.
Cola
,
B. A.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Carbon Nanotube Array Thermal Interfaces on Chemical Vapor Deposited Diamond
,”
Proceedings of ASME InterPACK
,
Vancouver, BC, Canada
, Vol.
1
, pp.
967
969
.
75.
Liu
,
X.
,
Zhang
,
Y.
,
Cassell
,
A. M.
, and
Cruden
,
B. A.
, 2008, “
Implications of Catalyst Control for Carbon Nanotube Based Thermal Interface Materials
,”
J. Appl. Phys.
,
104
(
8
), p.
084310
.
76.
Ngo
,
Q.
,
Cruden
,
B. A.
,
Cassell
,
A. M.
,
Sims
,
G.
,
Meyyappan
,
M.
,
Li
,
J.
, and
Yang
,
C. Y.
, 2004, “
Thermal Interface Properties of Cu-Filled Vertically Aligned Carbon Nanofiber Arrays
,”
Nano Lett.
,
4
(
12
), pp.
2403
2407
.
77.
Panzer
,
M. A.
,
Zhang
,
G.
,
Mann
,
D.
,
Hu
,
X.
,
Pop
,
E.
,
Dai
,
H.
, and
Goodson
,
K. E.
, 2008, “
Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays
,”
J. Heat Transfer
,
130
(
5
), pp.
052401
.
78.
Prasher
,
R.
, 2008, “
Thermal Boundary Resistance and Thermal Conductivity of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
77
(
7
), pp.
075424
.
79.
Tong
,
T.
,
Yang
,
Z.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
, 2007, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.
80.
Wang
,
H.
,
Feng
,
J.
,
Hu
,
X.
, and
Ng
,
K. M.
, 2007, “
Synthesis of Aligned Carbon Nanotubes on Double-Sided Metallic Substrates by Chemical Vapor Deposition
,”
J. Phys. Chem. C
,
111
, pp.
12617
12624
.
81.
Wang
,
X.
,
Zhong
,
Z.
, and
Xu
,
J.
, 2005, “
Noncontact Thermal Characterization of Multiwall Carbon Nanotubes
,”
J. Appl. Phys.
,
97
(
6
), p.
064302
.
82.
Zhang
,
K.
,
Chai
,
Y.
,
Yuen
,
M. M. F.
,
Xiao
,
D. G. W.
, and
Chan
,
P. C. H.
, 2008, “
Carbon Nanotube Thermal Interface Material for High-Brightness Light-Emitting-Diode Cooling
,”
Nanotechnology
,
21
, pp.
215706
.
83.
Cross
,
R.
,
Cola
,
B. A.
,
Fisher
,
T. S.
,
Xu
,
X.
,
Gall
,
K.
, and
Graham
,
S.
, 2010, “
A Metallization and Bonding Approach for High Performance Carbon Nanotube Thermal Interface Materials
,”
Nanotechnology
,
21
(
44
), pp.
445705
.
84.
Cola
,
B. A.
,
Hodson
,
S. L.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2008, “
Carbon Nanotube Arrays Thermal Interfaces Enhanced With Paraffin Wax
,”
Proceedings of 2008 ASME Summer Heat Transfer Conference
,
Jacksonville, FL
.
85.
Hamdan
,
A.
, and
Cho
,
J.
,
Johnson
,
R.
,
Jiao
,
J.
,
Bahr
,
D.
,
Richards
,
R.
, and
Richards
,
C.
, 2010, “
Evaluation of a Thermal Interface Material Fabricated Using Thermocompression Bonding of Carbon Nanotube Turf
,”
Nanotechnology
,
21
(
1
), pp.
015702
.
86.
Cola
,
B. A.
, 2008, “
Photoacoustic Characterization and Optimization of Carbon Nanotube Array Thermal Interfaces
,” Ph.D. Purdue University, West Lafayette, IN.
87.
Zhen
,
Y.
,
Kane
,
C. L.
, and
Dekker
,
C.
, 2000, “
High-Field Electrical Transport in Single-Wall Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
13
), pp.
2941
2944
.
88.
Bekyarova
,
E.
,
Itkis
,
M. E.
,
Cabrera
,
N.
,
Zhao
,
B.
,
Yu
,
A. P.
,
Gao
,
J. B.
, and
Haddon
,
R. C.
, 2005, “
Electronic Properties of Single-Walled Carbon Nanotube Networks
,”
J. Am. Chem. Soc.
,
127
(
16
), pp.
5990
5995
.
89.
Saran
,
N.
,
Parikh
,
K.
,
Suh
,
D. S.
,
Munoz
,
E.
,
Kolla
,
H.
, and
Manohar
,
S. K.
, 2004, “
Fabrication and Characterization of Thin Films of Single-Walled Carbon Nanotube Bundles on Flexible Plastic Substrates
,”
J. Am. Chem. Soc.
,
126
(
14
), pp.
4462
4463
.
90.
Itkis
,
M. E.
,
Niyogi
,
S.
,
Meng
,
M. E.
,
Hamon
,
M. A.
,
Hu
,
H.
, and
Haddon
,
R. C.
, 2002, “
Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes
,”
Nano Lett.
,
2
(
2
), pp.
155
159
.
91.
Kim
,
J. S.
,
Lägel
,
B.
,
Moons
,
E.
,
Johansson
,
N.
,
Baikie
,
I. D.
,
Salaneck
,
W. R.
,
Friend
,
R. H.
, and
Cacialli
,
F.
, 2000, “
Kelvin Probe and Ultraviolet Photoemission Measurements of Indium Tin Oxide Work Function: A Comparison
,”
Synth. Met.
,
111–112
, pp.
311
314
.
92.
Jackson
,
R. K.
,
Munro
,
A.
,
Nebesny
,
K.
,
Armstrong
,
N.
, and
Graham
,
S.
, 2010, “
Evaluation of Transparent Carbon Nanotube Networks of Homogeneous Electronic Type
,”
ACS Nano
,
4
, pp.
1377
1384
.
93.
Wu
,
Z. C.
,
Chen
,
Z. H.
,
Du
,
X.
,
Logan
,
J. M.
,
Sippel
,
J.
,
Nikolou
,
M.
,
Kamaras
,
K.
,
Reynolds
,
J. R.
,
Tanner
,
D. B.
,
Hebard
,
A. F.
, and
Rinzler
,
A. G.
, 2004, “
Transparent, Conductive Carbon Nanotube Films
,”
Science
,
305
(
5688
), pp.
1273
1276
.
94.
Hu
,
L.
,
Hecht
,
D. S.
, and
Gruner
,
G.
, 2010, “
Carbon Nanotube Thin Films: Fabrication, Properties, and Applications
,”
Chem. Rev.
,
110
, pp.
5790
5844
.
95.
Gruner
,
G.
, 2006, “
Carbon Nanotube Films for Transparent and Plastic Electronics
,”
J. Mater. Chem.
,
16
(
35
), pp.
3533
3539
.
96.
Aguirre
,
C. M.
,
Auvray
,
S.
,
Pigeon
,
S.
,
Izquierdo
,
R.
,
Desjardins
,
P.
, and
Martel
,
R.
, 2006, “
Carbon Nanotube Sheets as Electrodes in Organic Light-Emitting Diodes
,”
Appl. Phys. Lett.
,
88
(
18
), p.
183104
.
97.
Kaempgen
,
M.
,
Duesberg
,
G. S.
, and
Roth
,
S.
, 2005, “
Transparent Carbon Nanotube Coatings
,”
Appl. Surf. Sci.
,
252
(
2
), pp.
425
429
.
98.
Geng
,
H.-Z.
,
Kim
,
K. K.
, and
Lee
,
Y. H.
, 2008,
Recent Progresses in Carbon Nanotube-Based Flexible Transparent Conducting Film
,
The International Society for Optical Engineering (SPIE)
,
San Diego, CA
, pp.
7037
.
99.
Tenent
,
R. C.
,
Barnes
,
T. M.
,
Bergeson
,
J. D.
,
Ferguson
,
A. J.
,
To
,
B.
,
Gedvilas
,
L. M.
,
Heben
,
M. J.
, and
Blackburn
,
J. L.
, 2009, “
Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying
,”
Adv. Mater.
,
21
(
31
), pp.
3210
3216
.
100.
Jackson
,
R.
,
Domercq
,
B.
,
Jain
,
R.
,
Kippelen
,
B.
, and
Graham
,
S.
, 2008, “
Stability of Doped Transparent Carbon Nanotube Electrodes
,”
Adv. Funct. Mater.
,
18
(
17
), pp.
2548
2554
.
101.
Dettlaff-Weglikowska
,
U.
,
Skakalova
,
V.
,
Graupner
,
R.
,
Jhang
,
S. H.
,
Kim
,
B. H.
,
Lee
,
H. J.
,
Ley
,
L.
,
Park
,
Y. W.
,
Berber
,
S.
,
Tomanek
,
D.
, and
Roth
,
S.
, 2005, “
Effect of Socl2 Treatment on Electrical and Mechanical Properties of Single-Wall Carbon Nanotube Networks
,”
J. Am. Chem. Soc.
,
127
(
14
), pp.
5125
5131
.
102.
Parekh
,
B. B.
,
Fanchini
,
G.
,
Eda
,
G.
, and
Chhowalla
,
M.
, 2007, “
Improved Conductivity of Transparent Single-Wall Carbon Nanotube Thin Films Via Stable Postdeposition Functionalization
,”
Appl. Phys. Lett.
,
90
(
12
), p.
121913
.
103.
Geng
,
H. Z.
,
Kim
,
K. K.
,
So
,
K. P.
,
Lee
,
Y. S.
,
Chang
,
Y.
, and
Lee
,
Y. H.
, 2007, “
Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films
,”
J. Am. Chem. Soc.
,
129
(
25
), pp.
7758
7759
.
104.
Jackson
,
R.
, 2009, “
Development of Single Wall Carbon Nanotube Transparent Conductive Electrodes for Organic Electronics
,” Ph.D., Georgia Institute of Technology, Atlanta.
105.
Huh
,
J. Y.
,
Walker
,
A. R. H.
,
Ro
,
H. W.
,
Obrzut
,
J.
,
Mansfield
,
E.
,
Geiss
,
R.
, and
Fagan
,
J. A.
, 2010, “
Separation and Characterization of Double-Wall Carbon Nanotube Subpopulations
,”
J. Phys. Chem. C
,
114
, pp.
11343
11351
.
106.
Unger
,
E.
,
Duesberg
,
G. S.
,
Liebau
,
M.
,
Graham
,
A. P.
,
Seidel
,
R.
,
Kreupl
,
F.
, and
Hoenlein
,
W.
, 2003, “
Decoration of Multi-Walled Carbon Nanotubes with Noble- and Transition-Metal Clusters and Formation of CNT-CNT Networks
,”
Appl. Phys. A: Mater. Sci. Process.
,
77
, pp.
735
738
.
107.
Choi
,
H.
,
Kim
,
H.
,
Hwang
,
S.
,
Choi
,
W.
, and
Jeon
,
M.
, 2011, “
Dye-Sensitized Solar Cells Using Graphene-Based Carbon Nano Composite as Counter Electrode
,”
Sol. Energy Mater. Sol. Cells
,
95
, pp.
296
300
.
108.
Tang
,
Y.
, and
Gou
,
J.
, 2010, “
Synergistic Effect on Electrical Conductivity of Few-Layer Graphene/Multi-Walled Carbon Nanotube Paper
,”
Mater. Lett.
,
64
, pp.
2513
2516
.
109.
Kymakis
,
E.
,
Stratakis
,
E.
, and
Koudoumas
,
E.
, 2007, “
Integration of Carbon Nanotubes as Hole Transport Electrode in Polymer/Fullerene Bulk Heterojunction Solar Cells
,”
Thin Solid Films
,
515
(
24
), pp.
8598
8600
.
You do not currently have access to this content.