The unravelling of (10, 10) and (18, 0) single-walled carbon nanotubes (SWCNTs) is simulated using molecular dynamics simulations at different temperatures. Two different schemes are proposed to simulate the unravelling; completely restraining the last atom in the chain and only restraining it in the axial direction. The forces on the terminal atom in the unravelled chain in the axial and radial directions are reported till the separation of the atomic chain from the carbon nanotube structure. The force-displacement relation for a chain structure at different temperatures is calculated and is compared to the unravelling forces. The axial stresses in the body of the carbon nanotube are calculated and are compared to the failure stresses of that specific nanotube. Results show that the scheme used to unravel the nanotube and the temperature can only effect the duration needed before the separation of some or all of the atomic chain from the nanotube, but does not affect the unravelling forces. The separation of the atomic chain from the nanotube is mainly due to the impulsive excessive stresses in the chain due to the addition of a new atom and rarely due to the steady stresses in the chain. From the simulations, it is clear that the separation of the chain will eventually happen due to the closing structure occurring at the end of the nanotube that would not be possible in multiwalled nanotubes.

References

References
1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
,
354
, pp.
56
58
.
2.
Ragab
,
T.
, and
Basaran
,
C.
, 2009, “
Joule Heating in Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
106
, p.
063705
.
3.
Javey
,
A.
,
Guo
,
J.
,
Paulsson
,
M.
,
Wang
,
Q.
,
Mann
,
D.
,
Lundstrom
,
M.
, and
Dai
,
H.
, 2004, “
High-Field Quasiballistic Transport in Short Carbon Nanotubes
,”
Phys. Rev. Lett.
,
92
, p.
106804
.
4.
Javey
,
A.
,
Guo
,
J.
,
Wang
,
Q.
,
Lundstrom
,
M.
, and
Dai
,
H.
, 2003, “
Ballistic Carbon Nanotube Field-Effect Transistors
,”
Nature (London)
,
424
, pp.
654
657
.
5.
Javey
,
A.
,
Qi
,
P.
,
Wang
,
Q.
, and
Dai
,
H.
, 2004, “
Ten- to 50-nm-Long Quasi-Ballistic Carbon Nanotube Devices Obtained Without Complex Lithography
,”
PNAS
,
101
, pp.
13408
13410
.
6.
Pop
,
E.
,
Mann
,
D.
,
Wang
,
Q.
,
Goodson
,
K.
, and
Dai
,
H.
, 2006, “
Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature
,”
Nano Lett.
,
6
, pp.
96
100
.
7.
Pop
,
E.
,
Mann
,
D. A.
,
Goodson
,
K. E.
, and
Dai
,
H.
, 2007, “
Electrical and Thermal Transport in Metallic Single-Wall Carbon Nanotubes on Insulating Substrates
,”
J. Appl. Phys.
,
101
, p.
093710
.
8.
Popov
,
V. N.
, and
Lambin
,
P.
, 2006, “
Intraband Electron-Phonon Scattering in Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
74
, p.
075415
.
9.
Rafil-Tabar
,
H.
, 2004, “
Computational Modelling of Thermo-Mechanical and Transport Properties of Carbon Nanotubes
,”
Phys. Rep.
,
390
, p.
235
.
10.
Ragab
,
T.
, and
Basaran
,
C.
, 2010, “
A Quantum Mechanical Formulation of Electron Transport Induced Wind Forces in Metallic Single-Walled Carbon Nanotubes
,”
Carbon
,
48
, pp.
47
53
.
11.
Ragab
,
T.
, and
Basaran
,
C.
, 2010, “
The Prediction of the Effective Charge Number in Single-Walled Carbon Nanotubes Using Monte Carlo Simulation
,”
Carbon
,
49
, pp.
425
434
.
12.
Mylvaganam
,
K.
, and
Zhang
,
L. C.
, 2004, “
Important Issues in a Molecular Dynamics Simulation for Characterising the Mechanical Properties of Carbon Nanotubes
,”
Carbon
,
42
, pp.
2025
2032
.
13.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
, 1996, “
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
,
381
, pp.
678
680
.
14.
R.
Saito, R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
Physical Properties of Carbon Nanotubes
(
Imperial College Press
,
London
, 1998).
15.
White
,
C. T.
,
Robertson
,
D. H.
, and
Mintmire
,
J. W.
, 1993, “
Helical and Rotational Symmetries of Nanoscale Graphitic Tubules
,”
Phys. Rev. B
,
47
, pp.
5485
5488
.
16.
Rinzler
,
A. G.
,
Hafner
,
J. H.
,
Nikolaev
,
P.
,
Nordlander
,
P.
,
Colbert
,
D. T.
,
Smalley
,
R. E.
,
Lou
,
L.
,
Kim
,
S. G.
, and
Tománek
,
D.
, 1995, “
Unraveling Nanotubes: Field Emission From an Atomic Wire
,”
Science
,
269
, pp.
1550
1553
.
17.
De Heer
,
W. A.
,
Châtelain
,
A.
, and
Ugarte
,
D.
, 1995, “
A Carbon Nanotube Field-Emission Electron Source
,”
Science
,
270
, pp.
1179
1180
.
18.
She
,
J. C.
,
Xu
,
N. S.
,
Deng
,
S. Z.
,
Chen
,
J.
,
Bishop
,
H.
,
Huq
,
S. E.
,
Wang
,
L.
,
Zhong
,
D. Y.
, and
Wang
,
E. G.
, 2003, “
Vacuum Breakdown of Carbon-Nanotube Field Emitters on a Silicon Tip
,”
Appl. Phys. Lett.
,
83
, p.
2671
.
19.
Vincent
,
P.
,
Purcell
,
S. T.
,
Journet
,
C.
, and
Binh
,
V. T.
, 2002, “
Modelization of Resistive Heating of Carbon Nanotubes During Field Emission
,”
Phys. Rev. B
,
66
, p.
075406
.
20.
Bonard
,
J. M.
,
Kind
,
H.
,
Stöckli
,
T.
, and
Nilsson
,
L. O.
, 2001, “
Field Emission From Carbon Nanotubes: The First Five Years
,”
Solid-State Electron.
,
45
, pp.
893
914
.
21.
Lee
,
Y. H. L.
,
Kim
,
S. G.
, and
Tománek
,
D.
, 1997, “
Field-Induced Unraveling of Carbon Nanotubes
,”
Chem. Phys. Lett.
,
265
, pp.
667
672
.
22.
Agrawal
,
P. M.
,
Sudalayandi
,
B. S.
,
Raff
,
L. M.
, and
Komanduri
,
R.
, 2008, “
Molecular Dynamics (MD) Simulations of the Dependence of C–C Bond Lengths and Bond Angles on the Tensile Strain in Single-Wall Carbon Nanotubes (SWCNT)
,”
Comput. Mater. Sci.
,
41
, pp.
450
456
.
23.
Treister
,
Y.
, and
Pozrikidis
,
C.
, 2008, “
Numerical Study of Equilibrium Shapes and Deformation of Single-Wall Carbon Nanotubes
,”
Comput. Mater. Sci.
,
41
, pp.
383
408
.
24.
Negi
,
S.
,
Warrier
,
M.
,
Chaturvedi
,
S.
, and
Nordlund
,
K.
, 2009, “
Molecular Dynamic Simulations of a Double-Walled Carbon Nanotube Motor Subjected to a Sinusoidally Varying Electric Field
,”
Comput. Mater. Sci.
,
44
, pp.
979
987
.
25.
Imtani
,
A. N.
, and
Jindal
,
V. K.
, 2009, “
Pressure Effects on Bond Lengths and Shape of Zigzag Single-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
,
44
, pp.
1142
1149
.
26.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
, 2002, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
, pp.
783
802
.
27.
Brenner
,
D. W.
, 1990, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
, pp.
9458
9471.
28.
Abell
,
G. C.
, 1985, “
Empirical Chemical Pseudopotential Theory of Molecular and Metallic Bonding
,”
Phys. Rev. B
,
31
, pp.
6184
6196
.
29.
Tersoff
,
J.
, 1989,“
Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems
,”
Phys. Rev. B
,
39
, pp.
5566
5568
.
30.
Lennard-Jones
,
J. E.
, 1924, “
The Determination of Molecular Fields I. From the Variation of the Viscosity of a Gas With Temperature
,”
Proceedings of the Royal Society of London A
,
106
, p.
441
.
31.
Lennard-Jones
,
J. E.
, 1924, “
The Determination of Molecular Fields II. From the Equation of State of a Gas
,”
Proceedings of the Royal Society of London A
,
106
, p.
463
.
32.
Mao
,
Z.
,
Garg
,
A.
, and
Sinnott
,
S. B.
, 1999, “
Molecular Dynamics Simulations of the Filling and Decorating of Carbon Nanotubules
,”
Nanotechnology
,
10
, pp.
273
277
.
33.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
van Gunsteren
,
W. F.
,
DiNola
,
A.
, and
Haak
,
J. R.
, 1984, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
,
81
, pp.
3684
3690
.
34.
Ragab
,
T.
, and
Basaran
,
C.
, 2009, “
A Framework for Stress Computation in Single-Walled Carbon Nanotubes Under Uniaxial Tension
,”
Comput. Mater. Sci.
,
46
, pp.
1135
1143
.
35.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Schatz
,
G. C.
, and
Ruoff
,
R. S.
, 2002, “
Atomistic Simulations of Nanotube Fracture
,”
Phys. Rev. B
,
65
, p.
235430
.
36.
Chandra
,
N.
,
Namilae
,
S.
, and
Shet
,
C.
, 2004, “
Local Elastic Properties of Carbon Nanotubes in the Presence of Stone-Wales Defects
,”
Phys. Rev. B
,
69
, p.
094101
.
37.
Liew
,
K. M.
,
He
,
X. Q.
, and
Wong
,
C. H.
, 2004,“
On the Study of Elastic and Plastic Properties of Multi-Walled Carbon Nanotubes Under Axial Tension Using Molecular Dynamics Simulation
,”
Acta Mater.
,
52
, pp.
2521
2527
.
38.
Yao
,
Z.
,
Zhu
,
C.-C.
,
Cheng
,
M.
, and
Liu
,
J.
, 2001, “
Mechanical Properties of Carbon Nanotube by Molecular Dynamics Simulation
,”
Comput. Mater. Sci.
,
22
, pp.
180
184
.
39.
Vodenitcharova
,
T.
, and
Zhang
,
L. C.
, 2003, “
Effective Wall Thickness of a Single-Walled Carbon Nanotube
,”
Phys. Rev. B
,
68
, p.
165401
.
You do not currently have access to this content.