Heat transfer across the interfaces of dissimilar materials is a critical consideration in a wide variety of scientific and engineering applications. In this paper, molecular dynamics (MD) simulations are conducted to investigate the effects of thermal loading on mechanical properties of Al–Cu and Cr–Cu interfaces. The mechanical properties are investigated by MD simulations of nanoindentation. Both the results of MD simulations and experiments show the Young’s modulus decrease after thermal cycling, and the Cr–Cu interface is more sensitive to the thermal loading than the Al–Cu interface. The thermal loading and mechanical test models proposed here can be used to evaluate interfacial properties under the effects of heat transferring.

References

References
1.
Ju
,
Y. S.
, 2005, “
Impact of Nonequilibrium Between Electrons and Phonons on Heat Transfer in Metallic Nanoparticles Suspended in Dielectric Media
,”
ASME J. Heat Transfer
,
127
(
12
), pp.
1400
1402
.
2.
Kay
,
N. R.
,
Ghosh
,
S.
,
Guven
,
I.
, and
Madenci
,
E.
, 2006, “
A Combined Experimental and Analytical Approach for Interface Fracture Parameters of Dissimilar Materials in Electronic Packages
,”
Mater. Sci. Eng., A
,
421
(
1–2
), pp.
57
67
.
3.
Pop
,
E.
, and
Goodson
,
K. E.
, 2006, “
Thermal Phenomena in Nanoscale Transistors
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
102
108
.
4.
Weissmann
,
M.
,
Ramírez
,
R.
, and
Kiwi
,
M.
, 1992, “
Molecular-Dynamics Model of Interface Amorphization
,”
Phys. Rev. B
,
46
(
4
), pp.
2577
2583
.
5.
Volz
,
S. G.
,
Saulnier
,
J. B.
,
Chen
,
G.
, and
Beauchamp
,
P.
, 2000, “
Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques
,”
Microelectron. J.
,
31
(
9–10
), pp.
815
819
.
6.
Heino
,
P.
, 2001, “
Microstructure and Shear Strength of a Cu–Ta Interface
,”
Comput. Mater. Sci.
,
20
(
2
), pp.
157
167
.
7.
Watanabe
,
T.
,
Tatsummura
,
K.
, and
Ohdomari
,
I.
, 2004, “
SiO2/Si Interface Structure and Its Formation Studied by Large-Scale Molecular Dynamics Simulation
,”
Appl. Surf. Sci.
,
237
(
1–4
), pp.
125
133
.
8.
Stevens
,
R. J.
,
Zhigilei
,
L. V.
, and
Norris
,
P. M.
, 2007, “
Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid–Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3977
3989
.
9.
Ivanov
,
D. S.
, and
Zhigilei
,
L. V.
, 2003, “
Combined Atomistic-Continuum Modeling of Short-Pulse Laser Melting and Disintegration of Metal Films
,”
Phys. Rev. B
,
68
(
6
), p.
064114
.
10.
Mei
,
J.
,
Davenport
,
J. W.
, and
Fernando
,
G. W.
, 1991, “
Analytic Embedded-Atom Potentials for fcc Metals: Application to Liquid and Solid Copper
,”
Phys. Rev. B
,
43
(
6
), pp.
4653
4658
.
11.
Tsuru
,
T.
, and
Shibutani
,
Y.
, 2008, “
Dislocation Nucleation and Interaction Under Nanoindentation in Single Crystalline Al and Cu: Molecular Dynamics Simulations
,”
J. Comput. Sci. Technol.
,
2
(
4
), pp.
459
467
.
12.
Kim
,
S. P.
,
Lee
,
K. R.
,
Chung
,
Y. C.
,
Sahashi
,
M.
, and
Kim
,
Y. K.
, 2009, “
Molecular Dynamics Simulation Study of Deposition and Annealing Behaviors of Al Atoms on Cu Surface
,”
J. Appl. Phys.
,
105
(
11
), p.
114312
.
13.
Feng
,
J.
,
Xiao
,
B.
,
Liu
,
L.
,
Chen
,
J.
,
Du
,
Y.
, and
Zhou
,
R.
, 2010, “
Molecular Dynamical Simulation of the Behavior of Early Precipitated Stage in Aging Process in Dilute Cu–Cr Alloy
,”
J. Appl. Phys.
,
107
(
11
), p.
113514
.
14.
Swope
,
W. C.
,
Anderson
,
H. C.
,
Berens
,
P. H.
, and
Wilson
,
K. R.
, 1982, “
A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys.
,
76
(
1
), pp.
637
649
.
15.
Li
,
B.
,
Clapp
,
P. C.
,
Rifkin
,
J. A.
, and
Zhang
,
X. M.
, 2003, “
Molecular Dynamics Calculation of Heat Dissipation During Sliding Friction
,”
Int. J. Heat Mass Transfer
,
46
(
1
), pp.
37
43
.
16.
Maruyama
,
S.
, 2000, “
Molecular Dynamics Method for Microscale Heat Transfer
,”
Adv. Numer. Heat Transf.
,
2
(
6
), pp.
189
226
.
17.
Cleri
,
F.
, 2001, “
Representation of Mechanical Loads in Molecular Dynamics Simulation
,”
Phys. Rev. B
,
65
(
1
), p.
014107
.
18.
Fang
,
T. H.
,
Weng
,
C. I.
, and
Chang
,
J. G.
, 2003, “
Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement
,”
Mater. Sci. Eng., A
,
357
(
1–2
), pp.
7
12
.
19.
Kelchner
,
C. L.
,
Plimpton
,
S. J.
, and
Hamilton
,
J. C.
, 1998, “
Dislocation Nucleation and Defect Structure During Surface Indentation
,”
Phys. Rev. B
,
58
(
17
), pp.
11085
11088
.
You do not currently have access to this content.