Heat transfer across the interfaces of dissimilar materials is a critical consideration in a wide variety of scientific and engineering applications. In this paper, molecular dynamics (MD) simulations are conducted to investigate the effects of thermal loading on mechanical properties of Al–Cu and Cr–Cu interfaces. The mechanical properties are investigated by MD simulations of nanoindentation. Both the results of MD simulations and experiments show the Young’s modulus decrease after thermal cycling, and the Cr–Cu interface is more sensitive to the thermal loading than the Al–Cu interface. The thermal loading and mechanical test models proposed here can be used to evaluate interfacial properties under the effects of heat transferring.
Issue Section:
Carbon Nanotubes
References
1.
Ju
, Y. S.
, 2005, “Impact of Nonequilibrium Between Electrons and Phonons on Heat Transfer in Metallic Nanoparticles Suspended in Dielectric Media
,” ASME J. Heat Transfer
, 127
(12
), pp. 1400
–1402
. 2.
Kay
, N. R.
, Ghosh
, S.
, Guven
, I.
, and Madenci
, E.
, 2006, “A Combined Experimental and Analytical Approach for Interface Fracture Parameters of Dissimilar Materials in Electronic Packages
,” Mater. Sci. Eng., A
, 421
(1–2
), pp. 57
–67
.3.
Pop
, E.
, and Goodson
, K. E.
, 2006, “Thermal Phenomena in Nanoscale Transistors
,” ASME J. Electron. Packag.
, 128
(2
), pp. 102
–108
. 4.
Weissmann
, M.
, Ramírez
, R.
, and Kiwi
, M.
, 1992, “Molecular-Dynamics Model of Interface Amorphization
,” Phys. Rev. B
, 46
(4
), pp. 2577
–2583
. 5.
Volz
, S. G.
, Saulnier
, J. B.
, Chen
, G.
, and Beauchamp
, P.
, 2000, “Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques
,” Microelectron. J.
, 31
(9–10
), pp. 815
–819
. 6.
Heino
, P.
, 2001, “Microstructure and Shear Strength of a Cu–Ta Interface
,” Comput. Mater. Sci.
, 20
(2
), pp. 157
–167
. 7.
Watanabe
, T.
, Tatsummura
, K.
, and Ohdomari
, I.
, 2004, “SiO2/Si Interface Structure and Its Formation Studied by Large-Scale Molecular Dynamics Simulation
,” Appl. Surf. Sci.
, 237
(1–4
), pp. 125
–133
.8.
Stevens
, R. J.
, Zhigilei
, L. V.
, and Norris
, P. M.
, 2007, “Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid–Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations
,” Int. J. Heat Mass Transfer
, 50
(19–20
), pp. 3977
–3989
. 9.
Ivanov
, D. S.
, and Zhigilei
, L. V.
, 2003, “Combined Atomistic-Continuum Modeling of Short-Pulse Laser Melting and Disintegration of Metal Films
,” Phys. Rev. B
, 68
(6
), p. 064114
. 10.
Mei
, J.
, Davenport
, J. W.
, and Fernando
, G. W.
, 1991, “Analytic Embedded-Atom Potentials for fcc Metals: Application to Liquid and Solid Copper
,” Phys. Rev. B
, 43
(6
), pp. 4653
–4658
. 11.
Tsuru
, T.
, and Shibutani
, Y.
, 2008, “Dislocation Nucleation and Interaction Under Nanoindentation in Single Crystalline Al and Cu: Molecular Dynamics Simulations
,” J. Comput. Sci. Technol.
, 2
(4
), pp. 459
–467
. 12.
Kim
, S. P.
, Lee
, K. R.
, Chung
, Y. C.
, Sahashi
, M.
, and Kim
, Y. K.
, 2009, “Molecular Dynamics Simulation Study of Deposition and Annealing Behaviors of Al Atoms on Cu Surface
,” J. Appl. Phys.
, 105
(11
), p. 114312
. 13.
Feng
, J.
, Xiao
, B.
, Liu
, L.
, Chen
, J.
, Du
, Y.
, and Zhou
, R.
, 2010, “Molecular Dynamical Simulation of the Behavior of Early Precipitated Stage in Aging Process in Dilute Cu–Cr Alloy
,” J. Appl. Phys.
, 107
(11
), p. 113514
. 14.
Swope
, W. C.
, Anderson
, H. C.
, Berens
, P. H.
, and Wilson
, K. R.
, 1982, “A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,” J. Chem. Phys.
, 76
(1
), pp. 637
–649
. 15.
Li
, B.
, Clapp
, P. C.
, Rifkin
, J. A.
, and Zhang
, X. M.
, 2003, “Molecular Dynamics Calculation of Heat Dissipation During Sliding Friction
,” Int. J. Heat Mass Transfer
, 46
(1
), pp. 37
–43
. 16.
Maruyama
, S.
, 2000, “Molecular Dynamics Method for Microscale Heat Transfer
,” Adv. Numer. Heat Transf.
, 2
(6
), pp. 189
–226
.17.
Cleri
, F.
, 2001, “Representation of Mechanical Loads in Molecular Dynamics Simulation
,” Phys. Rev. B
, 65
(1
), p. 014107
. 18.
Fang
, T. H.
, Weng
, C. I.
, and Chang
, J. G.
, 2003, “Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement
,” Mater. Sci. Eng., A
, 357
(1–2
), pp. 7
–12
.19.
Kelchner
, C. L.
, Plimpton
, S. J.
, and Hamilton
, J. C.
, 1998, “Dislocation Nucleation and Defect Structure During Surface Indentation
,” Phys. Rev. B
, 58
(17
), pp. 11085
–11088
. Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.