Presently, many methods are adopted to reduce the junction-to-case thermal resistance (Rjc) of insulated-gate bipolar transistor (IGBT) modules in order to increase their power density. One of these approaches is to enhance the heat spreading capability of the base plate (heat spreader) of an IGBT module using a vapor chamber (VC). In this paper, both experimental measurement and thermal modeling are conducted on a VC-based IGBT module and two copper-plate-based IGBT modules. The experimental data show that Rjc of the VC-based IGBT module decreases substantially with the increase in the heat load of the IGBT. Rjc of the VC-based IGBT module is 50% of that of the 3 mm copper-plate-based IGBT module after it saturates at a heat load level of 200W. The transient time of the VC-based IGBT module is also shorter than the copper-plate-based IGBT modules since the VC has higher heat spreading capability. The quicker responses of the VC-based IGBT module to reach its saturated temperature during the start-up can avoid a possible power surge. In the thermal modeling, the vapor is substituted as a solid conductor with extremely high thermal conductivity. Hence, the two-phase flow thermal modeling of the VC is simplified as a one-phase thermal conductive modeling. A thermal circuit model is also built for the VC-based IGBT module. Both the thermal modeling and thermal circuit results match well with the experimental data.

1.
Chen
,
Y. J.
, and
Young
,
T. F.
, 2009, “
Thermal Stress and Heat Transfer Characteristics of a Cu/Diamond/Cu Heat Spreading Device
,”
Diamond Relat. Mater.
0925-9635,
18
, pp.
283
286
.
2.
Popova
,
N.
,
Schaeffer
,
Ch.
,
Avenas
,
Y.
, and
Kapelski
,
G.
, 2006, “
Fabrication and Thermal Performance of a Thin Flat Heat Pipe With Innovative Sintered Copper Wick Structure
,”
41st IEEE Conference on Industry Applications Conference (IAS), Conference Record of the 2006 IEEE
, Tampa, FL, Oct. 8–12, Vol.
2
, pp.
791
796
.
3.
Schulz-Harder
,
J.
,
Dezord
,
J. B.
,
Schaeffer
,
C.
,
Avenas
,
Y.
,
Puig
,
O.
, and
Utz-Kistner
,
A.
, 2006, “
DBC (Direct Bond Copper) Substrate With Integrated Flat Heat Pipe
,”
22nd IEEE Conference on Semiconductor Thermal Measurement and Management
, Dallas, TX, March 14–16, pp.
152
156
.
4.
Sauciuc
,
I.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Prasher
,
R.
, 2002, “
Spreading in the Heat Sink Base: Phase Change Systems or Solid Metals?
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
4
), pp.
621
628
.
5.
Avenas
,
Y.
,
Gillot
,
C.
,
Bricard
,
A.
,
Schaeffer
,
C.
, 2002, “
On the Use of Flat Heat Pipes as Thermal Spreaders in Power Electronics Cooling
,”
IEEE 33rd Annual Power Electronics Specialists Conference
, Cairns, Queensland, Australia, June 23–27, Vol.
2
, pp.
753
757
.
6.
Chen
,
Y. S.
,
Chien
,
K. H.
,
Wang
,
C. C.
,
Hung
,
T. C.
,
Ferng
,
Y. M.
, and
Pei
,
B. S.
, 2007, “
Investigations of the Thermal Spreading Effects of Rectangular Conduction Plates and Vapor Chamber
,”
ASME J. Electron. Packag.
1043-7398,
129
, pp.
348
355
.
7.
Hsieh
,
S. S.
,
Lee
,
R. Y.
,
Shyu
,
J. C.
, and
Chen
,
S. W.
, 2008, “
Thermal Performance of Flat Vapor Chamber Heat Spreader
,”
Energy Convers. Manage.
0196-8904,
49
, pp.
1774
1784
.
8.
Min
,
D. H.
,
Hwang
,
G. S.
, and
Kaviany
,
M.
, 2009, “
Multi-Artery Heat Pipe Spreader
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
629
635
.
9.
Hsieh
,
S. S.
,
Lee
,
R. Y.
,
Shyu
,
J. C.
, and
Chen
,
S. W.
, 2007, “
Analytical Solution of Thermal Resistance of Vapor Chamber Heat Sink With and Without Pillar
,”
Energy Convers. Manage.
0196-8904,
48
, pp.
2708
2717
.
10.
Zhang
,
M.
,
Liu
,
Z. L.
, and
Ma
,
G. Y.
, 2009, “
The Experimental and Numerical Investigation of a Grooved Vapor Chamber
,”
Appl. Therm. Eng.
1359-4311,
29
, pp.
422
430
.
11.
Koito
,
Y.
,
Imura
,
H.
,
Mochizuki
,
M.
,
Saito
,
Y.
, and
Torii
,
S.
, 2006, “
Numerical Analysis and Experimental Verification on Thermal Fluid Phenomena in a Vapor Chamber
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
1669
1676
.
12.
Chen
,
Y.
,
Chien
,
K.
,
Wang
,
C.
,
Hung
,
T. C.
, and
Pei
,
B. S.
, 2006, “
A Simplified Transient Three-Dimensional Model for Estimating the Thermal Performance of the Vapor Chambers
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
2087
2094
.
13.
Prasher
,
R. S.
, 2003, “
A Simplified Conduction Based Modeling Scheme for Design Sensitivity Study of Thermal Solution Utilizing Heat Pipe and Vapor Chamber Technology
,”
ASME J. Electron. Packag.
1043-7398,
125
, pp.
378
385
.
14.
Yu
,
X. L.
, 2005, “
Heat Transfer in Integrated Power Electronic Modules and in New Type of Plate-Pin Fin Heat Sink
,” Ph.D. thesis, Xi’an JiaoTong University, China.
You do not currently have access to this content.