The fatigue life of a material varies with the strain rate if it has time-dependent deformation. An interesting phenomenon related to the effect of the strain rate on the fatigue life can be observed when a cyclic tension-compression loading of which strain rate in the tensile region is different from that in the compressive region is employed for the fatigue test. Different fatigue lives due to different strain rates in the tensile and compression regions originate from the difference of development behaviors of creep strain generated in the cyclic loading. This paper investigates the effects of creep strain on the difference of fatigue life due to the different strain rate in the tensile and compression regions. The creep strain of the lead-free solder Sn–3.0Ag–0.5Cu subjected to a cyclic loading was investigated using stepped ramp wave loading. The experimental results reveal that the creep strain develops differently in the tensile and compression regions. A new parameter is proposed for estimating fatigue life when the strain rate varies in the loading direction.

1.
Solomon
,
H. D.
, and
Tolksdorf
,
E. D.
, 1995, “
Energy Approach to the Fatigue of 60/40 Solder: Part I—Influence of Temperature and Cycle Frequency
,”
ASME J. Electron. Packag.
1043-7398,
117
, pp.
130
135
.
2.
Leece
,
G. D.
,
Miskioglu
,
I.
, and
Nelson
,
D. A.
, 1996, “
Experimental Investigation of the Effects of Cycling Frequency and Temperature on the Fatigue Life of 60 Tin/40 Lead Solder
,”
ASME J. Electron. Packag.
1043-7398,
118
, pp.
280
284
.
3.
Ishikawa
,
H.
,
Sasaki
,
K.
, and
Ohguchi
,
K.
, 1996, “
Prediction of Fatigue Failure of 60Sn–40Pb Solder Using Constitutive Model for Cyclic Viscoplasticity
,”
ASME J. Electron. Packag.
1043-7398,
118
, pp.
164
169
.
4.
Wen
,
S.
, and
Keer
,
L. M.
, 2002, “
A Theory of Fatigue: A Physical Approach With Application to Lead-Rich Solder
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
1
10
.
5.
Liang
,
J.
,
Dariavach
,
N.
,
Callahan
,
P.
, and
Shangguan
,
D.
, 2007, “
Inelastic Deformation and Fatigue of Solder Alloys Under Complicated Load Conditions
,”
ASME J. Electron. Packag.
1043-7398,
129
, pp.
195
204
.
6.
Tokimasa
,
K.
, 2004, “
Creep-Fatigue Properties of Sn-37Pb Solder Material Evaluated by Room Temperature Testing Under Various Strain Waveforms
,”
JSME Int. J., Ser. A
1340-8046,
47
, pp.
380
388
.
7.
Zhang
,
S.
,
Ogawa
,
S.
, and
Sakane
,
M.
, 2009, “
Creep-Fatigue Life Assessment for Sn-3.0Ag-0.5Cu Solder
,”
Journal of Solid Mechanics and Materials Engineering
,
3
, pp.
507
517
.
8.
Kariya
,
Y.
,
Niimi
,
T.
,
Suga
,
T.
and
Otsuka
,
M.
, 2005, “
Low Cycle Fatigue Properties of Solder Alloys Evaluated by MICRO Bulk Specimen
,”
Proceedings of IPACK2005
, IPACK Paper No. 2005-73165.
9.
Roellig
,
M.
,
Dudek
,
R.
,
Wiese
,
S.
,
Boehme
,
B.
,
Wunderle
,
B.
,
Wolter
,
K. J.
, and
Michel
,
B.
, 2007, “
Fatigue Analysis of Miniaturized Lead-Free Solder Contacts Based on a Novel Test Concept
,”
Microelectron. Reliab.
0026-2714,
47
, pp.
187
195
.
10.
Erinc
,
M.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
, 2007, “
Integrated Numerical–Experimental Analysis of Interfacial Fatigue Fracture in SnAgCu Solder Joints
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
5680
5694
.
11.
Ladani
,
L. J.
, and
Razmi
,
J.
, 2009, “
An Anisotropic Mechanical Fatigue Damage Evolution Model for Pb-Free Solder Materials
,”
Mech. Mater.
0167-6636,
41
, pp.
878
885
.
12.
Herkommer
,
D.
,
Punch
,
J.
, and
Reid
,
M.
, 2010, “
A Reliability Model for SAC Solder Covering Isothermal Mechanical Cycling and Thermal Cycling Conditions
,”
Microelectron. Reliab.
0026-2714,
50
, pp.
116
126
.
13.
Kuna
,
M.
, and
Wippler
,
S.
, 2010, “
A Cyclic Viscoplastic and Creep Damage Model for Lead Free Solder Alloys
,”
Eng. Fract. Mech.
0013-7944, in press.
14.
Nose
,
H.
,
Sakane
,
M.
,
Tsukada
,
Y.
, and
Nishimura
,
H.
, 2003, “
Temperature and Strain Rate Effects on Tensile Strength and Inelastic Constitutive Relationship of Sn-Pb Solders
,”
ASME J. Electron. Packag.
1043-7398,
125
, pp.
59
66
.
15.
Ohguchi
,
K.
, and
Sasaki
,
K.
, 2001, “
Description of Temperature Dependence and Creep Deformation of 60Sn–40Pb Solder Alloys
,”
JSME Int. J., Ser. A
1340-8046,
44
, pp.
82
88
.
16.
Sasaki
,
K.
,
Ohguchi
,
K.
, and
Ishikawa
,
H.
, 2001, “
Viscoplastic Deformation of 40Pb/60Sn Solder Alloys—Experiments and Constitutive Modeling
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
379
387
.
17.
Ohguchi
,
K.
, and
Sasaki
,
K.
, 2003, “
Elastic-Plastic-Creep Simulation of Pb/Sn Solder Alloys by Separation of Plastic and Creep
,”
JSME Int. J., Ser. A
1340-8046,
46
, pp.
559
566
.
18.
Ohguchi
,
K.
,
Sasaki
,
K.
,
Ishibashi
,
M.
, and
Hoshino
,
T.
, 2004, “
Plasticity-Creep Separation Method for Viscoplastic Deformation of Lead-Free Solders
,”
JSME Int. J., Ser. A
1340-8046,
47
, pp.
371
379
.
19.
Ohguchi
,
K.
,
Sasaki
,
K.
, and
Ishibashi
,
M.
, 2006, “
A Quantitative Evaluation of Time-Independent and Time-Dependent Deformations of Lead-Free and Lead-Containing Solder Alloys
,”
J. Electron. Mater.
0361-5235,
35
, pp.
132
139
.
20.
Ohguchi
,
K.
,
Sasaki
,
K.
, and
Aso
,
S.
, 2009, “
Evaluation of Time-Independent and Time-Dependent Strains of Lead-Free Solder by Stepped Ramp Loading Test
,”
ASME J. Electron. Packag.
1043-7398,
131
, p.
021003
.
21.
Ohguchi
,
K.
, and
Sasaki
,
K.
, 2010, “
Time-Independent and Time-Dependent Inelastic Strains Analysis of Lead-Free Solder by Cyclic Stepped Ramp Wave Loading Test
,”
ASME J. Electron. Packag.
1043-7398,
132
, p.
041003
.
22.
The Society of Materials Science, Japan, 2001, “
Factual Database on Tensile and Low Cycle Fatigue Properties of Sn-37Pb and Sn-3.5Ag Solders
,” The Society of Materials Science, Japan, p. 102.
You do not currently have access to this content.