Subambient temperature operations of advanced semiconductor devices offer many benefits, including improved reliability, reduced leakage currents, and enhanced signal to noise ratios. We discuss a new design concept for compact solid-state refrigerators based on the electrocaloric (EC) effect. The EC refrigerators are attractive because they may approach the Carnot efficiency more closely than Peltier coolers, which involve intrinsically irreversible processes. To address parasitic losses and other practical considerations that limit the actual performance of EC coolers, we incorporate laterally interdigitated electrode arrays with high effective thermal conductivity and switchable thermal interfaces with high switching ratios and high off-state thermal resistance. Numerical simulations are used to quantify the impact of various design parameters and the expected performance of the module, focusing in particular on the heat diffusion time and RC thermal time constant. Based on the material properties reported in the literature, we project that cooling power densities >10W/cm2 may be achieved across ΔT of the order of 10 K at coefficient of performance (COP)>10. The present work motivates further experimental studies to develop advanced electrocaloric materials and fabricate/test cooling modules to assess the feasibility of their practical application.

1.
Cady
,
W. G.
, 1946,
Piezoelectricity
,
McGraw-Hill
,
New York
.
2.
Lang
,
S. B.
, 1976, “
Cryogenic Refrigeration Utilizing the Electrocaloric Effect in Pyroelectric Lithium Sulfate Monohydrate
,”
Ferroelectrics
0015-0193,
11
, pp.
519
523
.
3.
Mischenko
,
A. S.
,
Zhang
,
Q.
,
Scott
,
J. F.
,
Whatmore
,
R. W.
, and
Mathur
,
N. D.
, 2006, “
Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3
,”
Science
0036-8075,
311
, pp.
1270
1271
.
4.
Neese
,
B.
,
Chu
,
B.
,
Lu
,
S. -G.
,
Wang
,
Y.
,
Furman
,
E.
, and
Zhang
,
Q. M.
, 2008, “
Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature
,”
Science
0036-8075,
321
(
5890
), pp.
821
823
.
5.
Lu
,
S. -G.
, and
Zhang
,
Q.
, 2009, “
Electrocaloric Materials for Solid-State Refrigeration
,”
Adv. Mater.
0935-9648,
21
, pp.
1983
1987
.
6.
Olsen
,
R. B.
,
Bruno
,
D. A.
,
Briscoe
,
J. M.
, and
Jacobs
,
E. W.
, 1985, “
Pyroelectric Conversion Cycle of Vinylidene Fluoride-Trifluoroethyelene Co-Polymer
,”
J. Appl. Phys.
0021-8979,
57
, pp.
5036
5042
.
7.
Sebald
,
G.
,
Lefeuvre
,
E.
, and
Guyomar
,
D.
, 2008, “
Pyroelectric Energy Conversion: Optimization Principles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
55
, pp.
538
551
.
8.
Chattopadhyay
,
S.
,
Ayyub
,
P.
,
Palkar
,
V. R.
, and
Multani
,
M.
, 1995, “
Size-Induced Phase Transitions in the Nanocrystalline Ferroelectric PbTiO3
,”
Phys. Rev. B
0556-2805,
52
, pp.
13177
13183
.
9.
Ohno
,
T.
,
Suzuki
,
D.
,
Ishikawa
,
J.
, and
Suzuki
,
H.
, 2007, “
Size Effect for Lead Zirconate Titanate Nano-Particles With PZT (40/60) Composition
,”
Adv. Powder Technol.
0921-8831,
18
(
5
), pp.
579
589
.
10.
Epstein
,
R. I.
, and
Malloy
,
K. J.
, 2009, “
Electrocaloric Devices Based on Thin-Film Heat Switches
,”
J. Appl. Phys.
0021-8979,
106
, p.
064509
.
11.
Barillaro
,
G.
,
Diligenti
,
A.
,
Nannini
,
A.
, and
Pennelli
,
G.
, 2003, “
A Thick Silicon Dioxide Fabrication Process Based on Electrochemical Trenching of Silicon
,”
Sens. Actuators, A
0924-4247,
107
, pp.
279
284
.
12.
Linnros
,
J.
,
Badel
,
X.
, and
Kleimann
,
P.
, 2006, “
Macro Pore and Pillar Array Formation in Silicon by Electrochemical Etching
,”
Phys. Scr., T
0281-1847,
126
, pp.
72
76
.
13.
Kim
,
J. H.
,
Andeen
,
D.
, and
Lange
,
F. F.
, 2006, “
Hydrothermal Growth of Periodic, Single-Crystal ZnO Microrods and Microtunnels
,”
Adv. Mater.
0935-9648,
18
, pp.
2453
2457
.
14.
Bharadwaja
,
S. S. N.
, 2006, “
Fabrication of High Aspect Ratio Ferroelectric Microtubes by Vacuum Infiltration Using Macroporous Silicon Templates
,”
J. Am. Ceram. Soc.
0002-7820,
89
, pp.
2695
2701
.
15.
Ghoshal
,
U. S.
, 2003, “
Apparatus and Method for Performing Switching in Magnetic Refrigeration Systems Using Thermoelectric Switches
,” U.S. Patent No. 6,595,004 B1.
16.
Mischenko
,
A. S.
,
Zhang
,
Q.
,
Whatmore
,
R. W.
, and
Mathur
,
N. D.
, 2006, “
Giant Electrocaloric Effect in the Thin Film Relaxor Ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 Near Room Temperature
,” arXiv:cond-mat/0604268v1.
17.
Song
,
W.
,
Sutton
,
M. S.
, and
Talghader
,
J. J.
, 2002, “
Thermal Contact Conductance of Actuated Interface
,”
Appl. Phys. Lett.
0003-6951,
81
, pp.
1216
1218
.
18.
Cho
,
J.
,
Richards
,
C.
,
Bahr
,
D.
,
Jiao
,
J.
, and
Richards
,
R.
, 2008, “
Evaluation of Contacts for MEMS Thermal Switch
,”
J. Micromech. Microeng.
0960-1317,
18
, p.
105012
.
19.
Cha
,
G.
, and
Ju
,
Y. S.
, 2009, “
Reversible Thermal Interfaces Based on Microscale Dielectric Liquid Layers
,”
Appl. Phys. Lett.
0003-6951,
94
, p.
211904
.
20.
Viehland
,
D.
, and
Li
,
J. F.
, 2001, “
Investigations of Electrostrictive Pb(Mg1/3Nb2/3)O3–PbTiO3 Ceramics Under High-Power Drive Conditions: Importance of Compositional Fluctuations on Residual Hysteresis
,”
J. Appl. Phys.
0021-8979,
89
, pp.
1826
1835
.
You do not currently have access to this content.