We previously proposed an elastic-plastic-creep model to estimate the fatigue strength of lead-free solder joints subjected to cyclic thermal loading. The proposed model requires detailed experimental data regarding the time-independent plastic strain and the time-dependent creep strain during cyclic thermal loading. This paper proposes an experimental method for determining the characteristics of both the plastic and creep strains generated during cyclic loading that employs stepped ramp waves. This method is applied to cyclic tension-compression loadings using a Sn–3.0Ag–0.5Cu lead-free solder for several loading conditions. The method can separate between the time-independent plastic strain and the time-dependent creep strain in cyclic inelastic deformation of solder alloys.

1.
Pao
,
Y. -H.
,
Govila
,
R.
,
Badgley
,
S.
, and
Jih
,
E.
, 1993, “
An Experimental and Finite Element Study of Thermal Fatigue Fracture of PbSn Solder Joints
,”
ASME J. Electron. Packag.
1043-7398,
115
, pp.
1
8
.
2.
Solomon
,
H. D.
, 1989, “
Strain-Life Behavior in 60/40 Solder
,”
ASME J. Electron. Packag.
1043-7398,
111
, pp.
75
82
.
3.
Ishikawa
,
H.
,
Sasaki
,
K.
, and
Ohguchi
,
K.
, 1996, “
Prediction of Fatigue Failure of 60Sn-40Pb Solder Using Constitutive Model for Cyclic Viscoplasticity
,”
ASME J. Electron. Packag.
1043-7398,
118
, pp.
164
169
.
4.
Maciucescu
,
L.
,
Sham
,
T. -L.
, and
Krempl
,
E.
, 1999, “
Modeling the Deformation Behavior of a Sn-Pb Solder Alloy Using the Simplified Viscoplasticity Theory Based on Overstress (VBO)
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
92
97
.
5.
Ohguchi
,
K.
, and
Sasaki
,
K.
, 2001, “
Description of Temperature Dependence and Creep Deformation of 60Sn–40Pb Solder Alloys
,”
JSME Int. J., Ser. A
1340-8046,
44
, pp.
82
88
.
6.
Sasaki
,
K.
,
Ohguchi
,
K.
, and
Ishikawa
,
H.
, 2001, “
Viscoplastic Deformation of 40Pb/60Sn Solder Alloys—Experiments and Constitutive Modeling
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
379
387
.
7.
Yi
,
S.
,
Luo
,
G.
, and
Chian
,
K. S.
, 2002, “
A Viscoplastic Constitutive Model for 63Sn37Pb Eutectic Solders
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
91
96
.
8.
Nose
,
H.
,
Sakane
,
M.
,
Tsukada
,
Y.
, and
Nishimura
,
H.
, 2003, “
Temperature and Strain Rate Effects on Tensile Strength and Inelastic Constitutive Relationship of Sn-Pb Solders
,”
ASME J. Electron. Packag.
1043-7398,
125
, pp.
59
66
.
9.
Vianco
,
P. T.
,
Rejent
,
J. A.
,
Fossum
,
A. F.
, and
Neilsen
,
M. K.
, 2007, “
Compression Stress–Strain and Creep Properties of the 52In–48Sn and 97In–3Ag Low-Temperature Pb-Free Solders
,”
J. Mater. Sci.: Mater. Electron.
0957-4522,
18
, pp.
93
119
.
10.
Wiese
,
S.
, and
Wolter
,
K. -J.
, 2004, “
Microstructure and Creep Behaviour of Eutectic SnAg and SnAgCu Solders
,”
Microelectron. Reliab.
0026-2714,
44
, pp.
1923
1931
.
11.
Villain
,
J.
,
Brueller
,
O. S.
, and
Qasim
,
T.
, 2002, “
Creep Behaviour of Lead Free and Lead Containing Solder Materials at High Homologous Temperatures With Regard to Small Solder Volumes
,”
Sens. Actuators, A
0924-4247,
99
, pp.
194
197
.
12.
Lang
,
F.
,
Tanaka
,
H.
,
Munegata
,
O.
,
Taguchi
,
T.
, and
Narita
,
T.
, 2005, “
The Effect of Strain Rate and Temperature on the Tensile Properties of Sn–3.5Ag Solder
,”
Mater. Charact.
1044-5803,
54
, pp.
223
229
.
13.
Kim
,
K. S.
,
Huh
,
S. H.
, and
Suganuma
,
K.
, 2002, “
Effects of Cooling Speed on Microstructure and Tensile Properties of Sn–Ag–Cu Alloys
,”
Mater. Sci. Eng., A
0921-5093,
333
, pp.
106
114
.
14.
Amagai
,
M.
,
Watanabe
,
M.
,
Omiya
,
M.
,
Kishimoto
,
K.
, and
Shibuya
,
T.
, 2002, “
Mechanical Characterization of Sn–Ag-Based Lead-Free Solders
,”
Microelectron. Reliab.
0026-2714,
42
, pp.
951
966
.
15.
Ohguchi
,
K.
,
Sasaki
,
K.
,
Ishibashi
,
M.
, and
Hoshino
,
T.
, 2004, “
Plasticity-Creep Separation Method for Viscoplastic Deformation of Lead-Free Solders
,”
JSME Int. J., Ser. A
1340-8046,
47
, pp.
371
379
.
16.
Shi
,
X. Q.
,
Wang
,
Z. P.
,
Zhou
,
W.
,
Pang
,
H. L. J.
, and
Yang
,
Q. J.
, 2002, “
A New Creep Constitutive Model for Eutectic Solder Alloy
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
85
90
.
17.
Kobayashi
,
M.
,
Mukai
,
M.
,
Takahashi
,
H.
,
Ohno
,
N.
, and
Kawakami
,
T.
, 2003, “
Implicit Integration and Consistent Tangent Modulus of a Time-Dependent Non-Unified Constitutive Model
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
, pp.
1523
1543
.
18.
Wiese
,
S.
, and
Rzepka
,
S.
, 2004, “
Time-Independent Elastic–Plastic Behaviour of Solder Materials
,”
Microelectron. Reliab.
0026-2714,
44
, pp.
1893
1900
.
19.
Shirley
,
D. R.
,
Ghorbani
,
H. R.
, and
Spelt
,
J. K.
, 2008, “
Effect of Primary Creep and Plasticity in the Modeling of Thermal
,”
Microelectron. Reliab.
0026-2714,
48
, pp.
455
470
.
20.
Ohguchi
,
K.
,
Sasaki
,
K.
, and
Ishibashi
,
M.
, 2006, “
A Quantitative Evaluation of Time-Independent and Time-Dependent Deformations of Lead-Free and Lead-Containing Solder Alloys
,”
J. Electron. Mater.
0361-5235,
35
, pp.
132
139
.
21.
Ohguchi
,
K.
,
Sasaki
,
K.
, and
Aso
,
S.
, 2009, “
Evaluation of Time-Independent and Time-Dependent Strains of Lead-Free Solder by Stepped Ramp Loading Test
,”
ASME J. Electron. Packag.
1043-7398,
131
, p.
021003
.
22.
The Society of Materials Science, Japan, 2001, “
Factual Database on Tensile and Low Cycle Fatigue Properties of Sn-37Pb and Sn-3.5Ag Solders
,” The Society of Materials Science, Japan, p. 102.
23.
Tokimasa
,
K.
, 2004, “
Creep-Fatigue Properties of Sn-37Pb Solder Material Evaluated by Room Temperature Testing Under Various Strain Waveforms
,”
JSME Int. J., Ser. A
1340-8046,
47
, pp.
380
388
.
24.
Zhang
,
S.
,
Ogawa
,
S.
, and
Sakane
,
M.
, 2009, “
Creep-Fatigue Life Assessment for Sn-3.0Ag-0.5Cu Solder
,”
Journal of Solid Mechanics and Materials Engineering
,
3
, pp.
507
517
.
25.
Ishikawa
,
H.
, 1997, “
Subsequent Yield Surface Probed From Its Current Center
,”
Int. J. Plast.
0749-6419,
13
(
6–7
), pp.
533
549
.
You do not currently have access to this content.