This paper presents a simulation method to evaluate the thermal fatigue life of a power module. A coupled electrical-thermal analysis was performed to obtain the nonuniform temperature distribution of electric current. Then, a thermomechanical analysis was carried out based on the temperature distribution from the electrical-thermal analysis. Since crack propagation can change the route of heat transfer, a crack path simulation technique was used to investigate the fracture behavior of the power module. The crack initiates in the solder joint below the Al bonding wire of the insulated gate bipolar transistor module and propagates by increasing the diameter. The effect of the bonding type on power cycling fatigue life is also discussed. The fracture process was found to depend on the type of bonding. Lead frame bonding was found to be more effective than wire bonding.

1.
Lu
,
H.
,
Loh
,
W. S.
,
Tilford
,
T.
,
Johnson
,
M.
, and
Bailey
,
C.
, 2007, “
Reliability of Power Electronic Modules
,”
Proceedings of Inter PACK’07
, Paper No. IPACK2007-33813.
2.
Yokono
,
Y.
,
Hisano
,
K.
, and
Hirohata
,
K.
, 2007, “
Robust Thermal Design for Power Device Package Using Response Surface Method and Monte Carlo Simulation
,”
Proceedings of HT2007
, Paper No. HT2007-32168.
3.
Morozumi
,
A.
,
Yamada
,
K.
, and
Miyasaka
,
T.
, 2001, “
Reliability Design Technology for Power Semiconductor Modules
,”
Fuji Electric Journal
,
74
(
2
), pp.
145
148
.
4.
Ishiko
,
M.
,
Usui
,
M.
,
Ohuchi
,
T.
, and
Shirai
,
M.
, 2006, “
Design Concept for Wire-Bonding Reliability Improvement by Optimizing Position in Power Devices
,”
Microelectron. J.
0026-2692,
37
, pp.
262
268
.
5.
Ye
,
H.
,
Efstathiadis
,
H.
, and
Haldar
,
P.
, 2006, “
Numerical Thermal Simulation of Cryogenic Power Modules Under Liquid Nitrogen Cooling
,”
ASME J. Electron. Packag.
1043-7398,
128
, pp.
267
272
.
6.
Usui
,
O.
,
Muto
,
H.
, and
Kikunaga
,
T.
, 2004, “
Evaluation of Temperature Distribution of a Power Semiconductor Chip Using Electrothermal Simulation
,”
IEEJ Trans. IA
,
124
(
1
), pp.
108
115
.
7.
Ikeda
,
Y.
,
Yoshihara
,
K.
,
Iizuka
,
Y.
, and
Yamashita
,
M.
, 2004, “
Study on Thermal Performance of Lead Frame Interconnection to Power Devices
,”
Proceedings of the 2004 JSME Annual Meeting
, pp.
67
68
.
8.
Iwasaki
,
H.
,
Hisano
,
K.
, and
Takamatsu
,
T.
, 2003, “
Thermal Problem of Next Generation Semiconductor Power Devices
,”
JSME 2003 Annual Meeting
, pp.
251
252
.
9.
Nagatomo
,
Y.
,
Nagase
,
T.
, and
Shimamura
,
S.
, 2000, “
FEM Analysis of Thermal Cycle Properties of the Substrates for Power Modules
,”
Transactions of Japan Institute Electronics Packaging
,
3
(
4
), pp.
330
334
.
10.
Yu
,
Q.
, and
Shiratori
,
M.
, 1997, “
Fatigue-Strength Prediction of Microelectronics Solder Joints Under Thermal Cyclic Loading
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
20
(
3
), pp.
266
273
.
11.
Yu
,
Q.
,
Shibutani
,
T.
,
Kim
,
D. -S.
,
Kobayashi
,
Y.
,
Yang
,
J.
, and
Shiratori
,
M.
, 2008, “
Effect of Process-Induced Voids on Isothermal Fatigue Resistance of CSP Lead-Free Solder Joints
,”
Microelectron. Reliab.
0026-2714,
48
(
3
), pp.
431
437
.
You do not currently have access to this content.