Thermal design requirements are mostly driven by the peak temperatures. Reducing or eliminating hot spots could alleviate the design requirement for the whole package. Combination of solid-state and liquid cooling will allow removal of both hot spots and background heating. In this paper, we analyze the performance of thin film Bi2Te3 microcooler and the 3D SiGe-based microrefrigerator, and optimize the maximum cooling and cooling power density in the presence of a liquid flow. Liquid flow and heat transfer coefficient will change the background temperature of the chip but they also affect the performance of the solid-state coolers used to remove hot spots. Both Peltier cooling at interfaces and Joule heating inside the device could be affected by the fluid flow. We analyze conventional Peltier coolers as well as 3D coolers. We study the impact of various parameters such as thermoelectric leg thickness, thermal interface resistances, and geometry factor on the overall system performance. We find that the cooling of a conventional Peltier cooler is significantly reduced in the presence of fluid flow. On the other hand, 3D SiGe cooler can be effective to remove high power density hot spots up to 500W/cm2. 3D microrefrigerators can have a significant impact if the thermoelectric figure-of-merit, ZT, could reach 0.5 for a material grown on silicon substrate. It is interesting to note that there is an optimum microrefrigerator active region thickness that gives the maximum localized cooling. For liquid heat transfer coefficient between 5000 and 20,000Wm2K1, the optimum is found to be between 10μm and 20μm.

1.
Goldsmid
,
H. J.
, 1986,
Electronic Refrigeration
,
Pion
,
London
.
2.
Rowe
,
D. M.
, 1995,
Handbook of Thermoelectrics
,
CRC
,
Boca Raton, FL
.
3.
Yamanashi
,
M.
, 1996, “
A New Approach to Optimum Design in Thermoelectric Cooling Systems
,”
J. Appl. Phys.
0021-8979,
80
, pp.
5494
5502
.
4.
Xuan
,
X. C.
, 2002, “
Optimum Design of a Thermoelectric Device
,”
Semicond. Sci. Technol.
0268-1242,
17
, pp.
114
119
.
5.
Xuan
,
X. C.
, 2003, “
Investigation of Thermal Contact Effect on Thermoelectric Coolers
,”
Energy Convers. Manage.
0196-8904,
44
, pp.
399
410
.
6.
Bar-Cohen
,
A.
,
Arik
,
M.
, and
Ohadi
,
M.
, 2006, “
Direct Liquid Cooling of High Flux Micro and Nano Electronic Components
,”
Proc. IEEE
0018-9219,
94
, pp.
1549
1570
.
7.
Sahu
,
V.
,
Joshi
,
Y.
, and
Federov
,
A.
, 2008, “
Hybrid Solid-State/Fluidic Cooling for Hot Spot Removal
,”
Proceedings of the ITherm 2008
.
8.
Maillet
,
D.
,
André
,
S.
,
Batsale
,
J. C.
,
Degiovanni
,
A.
, and
Moyne
,
C.
, 2000,
Thermal Quadrupoles: Solving the Heat Equation Through Integral Transforms
,
Wiley
,
Chichester
.
9.
Ezzahri
,
Y.
,
Dilhaire
,
S.
,
Patino-Lopez
,
L. D.
,
Grauby
,
S.
,
Claeys
,
W.
,
Bian
,
Z.
,
Zhang
,
Y.
, and
Shakouri
,
A.
, 2007, “
Dynamical Behavior and Cut-Off Frequency of Si/SiGe Microcoolers
,”
Superlattices Microstruct.
0749-6036,
41
, pp.
7
16
.
10.
Ezzahri
,
Y.
,
Zeng
,
G.
,
Fukutani
,
K.
,
Bian
,
Z.
, and
Shakouri
,
A.
, 2008, “
A Comparison of Thin Film Microrefrigerators Based on Si/SiGe Superlattice and Bulk SiGe
,”
Microelectron. J.
0026-2692,
39
, pp.
981
991
.
11.
Patino-Lopez
,
L. D.
,
Grauby
,
S.
,
Ezzahri
,
Y.
,
Cleays
,
W.
, and
Dilhaire
,
S.
, 2006, “
Harmonic Regime Analysis and Inverse Methods Applied to the Simultaneous Determination of Thermoelectric Properties
,”
Proceedings of the 25th International Conference on Thermoelectrics
, Vienna, Austria, Aug. 6–10.
12.
Patiño-Lopez
,
L. D.
, 2004, Ph.D. thesis, University Bordeaux 1, France.
13.
Ezzahri
,
Y.
, 2005, “
Etude du Transport des Phonons dans les Microréfrigérateurs à base de Super-réseaux Si/SiGe
,” Ph.D. thesis, University Bordeaux 1, France.
14.
Ziman
,
J. M.
, 1960,
Electrons and Phonons
,
Clarendon
,
Oxford
.
15.
Shakouri
,
A.
, and
Bowers
,
J. E.
, 1997, “
Heterostructure Integrated Thermionic Coolers
,”
Appl. Phys. Lett.
0003-6951,
71
, pp.
1234
1236
.
16.
Mahan
,
G. D.
,
Sofo
,
J. O.
, and
Bartkowiak
,
M.
, 1998, “
Multilayer Thermionic Refrigerator and Generator
,”
J. Appl. Phys.
0021-8979,
83
, pp.
4683
4689
.
17.
Mingo
,
N.
,
Hauser
,
D.
,
Kobayashi
,
N. P.
,
Plissonnier
,
M.
, and
Shakouri
,
A.
, 2009, “
“ Nanoparticle-in-Alloy” Approach to Efficient Thermoelectric: Silicides in SiGe
,”
Nano Lett.
1530-6984,
9
, pp.
711
715
.
You do not currently have access to this content.