Optical noninvasive temperature measurement techniques, such as interferometry, are particularly advantageous in obtaining temperature information noninvasively from enclosed low velocity flows induced by thermal sources, as commonly arise in electronic systems. The single greatest restriction in the application of interferometry as a standard measurement methodology has been the enormous cost associated with the optical equipment required. This cost is due to the quality of the optics required, which exhibits an exponential dependence on size. Digital Moiré subtraction is a technique, which removes the restriction on the use of high quality optics, thereby, enabling reasonably large fields of view. In this paper, a digital Moiré subtraction interferometer configuration is presented with a 140 mm field of view. First, the ability of the interferometer to accurately measure the free convection temperature field about an isothermal horizontal cylinder is examined through a comparison with measurements from literature using classical interferometry. The technique is then applied to the thermal interaction between 2D components representing BGAs mounted on a vertical printed circuit board (PCB). Qualitative and quantitative evaluation of the interferograms show the significant influence of in-plane PCB conductivity on the temperature field about the PCB. The spacing to length ratio above, which upstream components on a PCB experience enhanced cooling, is reduced from 4 to 3 for a PCB with a high effective in-plane conductivity (15W/mK).

1.
Goldstein
,
R. J.
, 1983,
Fluid Mechanics Measurements
,
Hemisphere
,
Washington
.
2.
Hauf
,
W.
, and
Grigull
,
U.
, 1970, “
Optical Methods in Heat Transfer
,”
Advances in Heat Transfer
,
J. P.
Hartnett
and
T. F.
Irvine
, eds.,
Academic Press
,
New York
, Vol.
6
, pp.
133
366
.
3.
Merzkirch
,
W.
, 1987,
Flow Visualisation
,
2nd ed.
,
Academic Press
,
Orlando, FL
, pp.
158
206
.
4.
van Dyke
,
M.
, 1982,
An Album of Fluid Motion
,
1st ed.
,
Parabolic
,
Stanford, CA
.
5.
Steel
,
W. H.
, 1983, “
Interferometry
,”
Cambridge Series in Modern Optics
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
6.
Tolansky
,
S.
, 1973,
An Introduction to Interferometry
,
2nd ed.
,
Longman
,
Harlow
.
7.
Cloud
,
G. L.
, 1995,
Optical Methods of Engineering Analysis
,
1st ed.
,
Cambridge University Press
,
Cambridge, UK
.
8.
Goldstein
,
R. J.
, 1976, “
Optical Techniques for Temperature Measurement
,”
Measurements in Heat Transfer
,
E. R. G.
Eckert
and
R. J.
Goldstein
, eds.,
2nd ed.
,
Hemisphere
,
Washington
, pp.
270
276
.
9.
Witzman
,
S.
, 1999, ‘
Thermal Modelling of Air-Cooled Components Mounted on Printed Circuit Boards
,”
Advances in Thermal Modelling of Electronic Components and Systems
,
A. D.
Bar-Cohen
and
A.
Kraus
, eds.,
ASME
,
New York
, Vol.
4
, pp.
179
249
.
10.
Bejan
,
A.
, 1995,
Convection Heat Transfer
,
2nd ed.
,
Wiley
,
New York
.
11.
Rodgers
,
P.
, and
Davies
,
M.
, 1994, “
Air Velocity and Temperature Measurements Around a Naturally Convecting Rectangular Fin Array
,”
Thermal Management of Electronic Systems
,
C. J.
Hoogendoorn
,
R. A. W. M.
Henkes
, and
C. J. M.
Lasance
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
211
220
.
12.
Dalton
,
T.
, and
Davies
,
M.
, 1996, “
An Experimental and Numerical Investigation of Natural Convection Plumes Above a Horizontal Cylinder in an Isothermal Cubical Enclosure
,”
Proceedings of the 31st National Heat Transfer Conference
, Houston, TX, Paper No. HTD VOL 329, Vol.
7
, pp.
3
11
.
13.
Jaluria
,
Y.
, 1982, “
Buoyancy-Induced Flow Due to Isolated Thermal Sources on a Vertical Surface
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
223
227
.
14.
Shaw
,
H.
,
Chen
,
C.
, and
Cleaver
,
J. W.
, 1988, “
The Effects of Thermal Sources on Natural Convection in an Enclosure
,”
Int. J. Heat Fluid Flow
0142-727X,
9
(
3
), pp.
296
301
.
15.
Joshi
,
Y.
,
Kelleher
,
M. D.
,
Powell
,
M.
, and
Torres
,
E. I.
, 1994, “
Natural Convection Heat Transfer From an Array of Rectangular Protrusions in an Enclosure Filled With Dielectric Liquid
,”
ASME J. Electron. Packag.
1043-7398,
116
, pp.
138
147
.
16.
Heindel
,
T. J.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
, 1995, “
Laminar Natural Convection in a Discretely Heated Cavity: II—Comparisons of Experimental and Theoretical Results
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
910
917
.
17.
Ramos
,
R. A. V.
,
Dias
,
T.
, and
Milanez
,
L. F.
, 1998, “
Numerical and Experimental Analysis of Natural Convection in an cavity With Flush Mounted Heat Sources on a Side Wall
,”
Proceedings of the InterSociety Conference on Thermal Phenomena
, pp.
130
134
.
18.
Eveloy
,
V.
,
Rodgers
,
P.
, and
Hashmi
,
M. S. J.
, 2005, “
Numerical Heat Transfer Predictive Accuracy for an In-Line Array of Board Mounted Plastic Quad Flat Pack Components in Free Convection
,”
ASME J. Electron. Packag.
1043-7398,
127
, pp.
245
254
.
19.
Forno
,
C.
, and
Whelan
,
M.
, 1999, “
Digital Moire Subtraction Applied to Interferometers as a Means of Improving Accuracy and Extending Field of View for Engineering and Optical Measurement
,”
Proceedings of the SPIE Interferometry ’99: Applications
,
W. P.
Jueptner
and
K.
Patorski
, eds.,
SPIE
,
Bellingham, WA
, Vol.
3745
, pp.
49
57
.
20.
Forno
,
C.
, and
Whelan
,
M.
, 2004, “
Combining Interference Fringe Patterns to a Moire Fringe Pattern
,” U.S. Patent No. 6,744,517.
21.
Yokozeki
,
S.
, and
Mihara
,
S.
, 1979, “
Moiré Interferometry
,”
Appl. Opt.
0003-6935,
18
(
8
), pp.
1275
1280
.
22.
Jones
,
R.
, and
Wykes
,
C.
, 1983,
Holographic Interferometry
,
Wiley
,
New York
.
23.
Sirohi
,
R. S.
, 1993,
Speckle Metrology
,
Marcel Dekker
,
New York
.
24.
Hipp
,
M.
,
Reiterer
,
P.
,
Woisetschlaeger
,
J.
,
Philipp
,
H.
,
Pretzler
,
G.
,
Fliesser
,
W.
, and
Neger
,
T.
, 1999, “
Application of Interferometric Fringe Evaluation Software at Technical University Graz
,”
Proc. SPIE
0277-786X,
3745
, pp.
281
287
.
25.
Gebhart
,
B.
, and
Knowles
,
C. P.
, 1966, “
Design and Adjustment of a 20 cm Mach-Zehnder Interferometer
,”
Rev. Sci. Instrum.
0034-6748,
37
, pp.
12
15
.
26.
Newport
,
D.
,
Dalton
,
T.
,
Davies
,
M.
,
Whelan
,
M.
, and
Forno
,
C.
, 2001, “
An Optical and Numerical Investigation Into the Thermal Interaction Between an Isothermal Cylinder and Its Isothermal Cubical Enclosure
,”
ASME J. Heat Transfer
0022-1481,
123
(
6
), pp.
1052
1061
.
27.
Punch
,
J.
, and
Davies
,
M.
, 1997, “
Still-Air Junction to Ambient Thermal Resistance of Different Devices as Functions of the Effective Thermal Conductivity of Printed Circuit Boards
,”
Proceedings of Eurotherm Seminar, No. 58, Thermal Management of Electronic Systems III
, Nantes, France, pp.
262
268
.
28.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
, 1976, “
Correlating Equations for Natural Convection Heat Transfer Between Horizontal Circular Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
1127
1134
.
29.
Vest
,
C. M.
, 1979, “
Holographic Interferometry
,”
Series in Pure and Applied Optics
,
Wiley
,
New York
, pp.
329
334
.
30.
Ostrach
,
S.
, 1988, “
Natural Convection in Enclosures
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
1175
1189
.
31.
Mayinger
,
F.
, 1993, “
Image-Forming Optical Techniques in Heat Transfer: Revival by Computer Aided Data Processing
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
824
834
.
32.
Lohan
,
J.
,
Tillikka
,
P.
,
Rodgers
,
P.
,
Fager
,
C.
, and
Rantala
,
J.
, 1999, “
Effect of PCB Thermal Conductivity on the Operating Temperature of an SO-8 Package in a Natural Convection Environment: Experimental Measurement Versus Numerical Prediction
,”
Proceedings of the Fifth International Workshop on IC and Systems, THERMINIC
, Rome, Italy, Oct. 3–6, pp.
207
213
.
You do not currently have access to this content.