In this study, we focus on investigating the nature of the stress and strain behavior in solder joints and their effect on the hybrid damage modeling approach, which is inspired by cohesive zone modeling and Weibull functions [Towashiraporn, et al., 2005, “A Hybrid Model for Computationally Efficient Fatigue Fracture Simulations at Microelectronic Assembly Interfaces,” Int. J. Solids Struct., 42(15), pp. 4468–4483]. We review well understood principles in elastic-plastic fracture mechanics and more recent work in cohesive zone modeling, that address the nature of the singular solutions at the crack tip and provide insight when dealing with the more complex problem of solder joint fracture. Using three-dimensional finite element analysis of a chip scale package, we systematically examine the stress-strain behavior at the edge of the solder joint along the interface. The singular nature of the behavior manifests itself as mesh dependence of the predicted crack front shape and the cycles to failure. We discuss the conditions under which the predicted crack growth rate is of reasonable accuracy by incorporating a characteristic length measure. We validate predictions made by the hybrid damage modeling approach against a companion experimental study in which crack growth was tracked in packages subjected to accelerated thermal cycling.

1.
Lee
,
W. W.
,
Nguyen
,
L. T.
, and
Selvaduray
,
G. S.
, 2000, “
Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
0026-2714,
40
(
2
), pp.
231
244
.
2.
Shang
,
J. K.
,
Zeng
,
Q. L.
,
Zhang
,
L.
, and
Zhu
,
Q. S.
, 2007, “
Mechanical Fatigue of Sn-Rich Pb-Free Solder Alloys
,”
J. Mater. Sci.: Mater. Electron.
0957-4522,
18
(
1–3
), pp.
211
227
.
3.
Paris
,
P. C.
,
Gomez
,
R. E.
, and
Anderson
,
W. E.
, 1961, “
A Rational Analytic Theory of Fatigue
,”
The Trend in Engineering.
,
13
(
1
), pp.
9
14
.
4.
Anderson
,
T. L.
, 2005,
Fracture Mechanics: Fundamentals and Applications
,
3rd ed.
,
CRC Press
,
Boca Raton, FL
.
5.
Ritchie
,
R. O.
, 1999, “
Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids
,”
Int. J. Fract.
0376-9429,
100
(
1
), pp.
55
83
.
6.
Wells
,
A. A.
, 1961, “
Unstable Crack Propagation in Metals: Cleavage and Fast Fracture
,”
Proceedings of Crack Propagation Symposium
, Vol.
1
, Paper No. 84, Cranfield, UK.
7.
Rice
,
J. R.
, 1968, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
379
386
.
8.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
9.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium of Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
0065-2156,
7
, pp.
55
129
.
10.
Hillerborg
,
A.
,
Modéer
,
M.
, and
Petersson
,
P. -E.
, 1976, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cement Concr. Res.
0008-8846,
6
, pp.
773
781
.
11.
Brocks
,
W.
,
Cornec
,
A.
, and
Scheider
,
I.
, 2003, “
Computational Aspects of Nonlinear Fracture Mechanics
,”
Comprehensive Structural Integrity
,
Elsevier
,
Maryland Heights, MO
, Vol.
3
, pp.
127
209
.
12.
Needleman
,
A.
, 1990, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
0376-9429,
42
, pp.
21
40
.
13.
Elices
,
M.
,
Guinea
,
G. V.
,
Gomez
,
J.
, and
Planas
,
J.
, 2002, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
0013-7944,
69
(
2
), pp.
137
163
.
14.
Hutchinson
,
J. W.
, 1968, “
Singular Behavior at End of Tensile Crack in Hardening Material
,”
J. Mech. Phys. Solids
0022-5096,
16
(
1
), pp.
13
31
.
15.
Rice
,
J. R.
, and
Rosengren
,
G. F.
, 1968, “
Plane Strain Deformation Near Crack Tip in Power-Law Hardening Material
,”
J. Mech. Phys. Solids
0022-5096,
16
(
1
), pp.
1
12
.
16.
McMeeking
,
R. M.
, 1977, “
Finite Deformation Analysis of Crack-Tip Opening in Elastic-Plastic Materials and Implications for Fracture
,”
J. Mech. Phys. Solids
0022-5096,
25
, pp.
357
381
.
17.
Jin
,
Z. -H.
, and
Sun
,
C. T.
, 2006, “
A Comparison of Cohesive Zone Modeling and Classical Fracture Mechanics Based on Near Tip Stress Field
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
1047
1060
.
18.
Jin
,
Z. -H.
, and
Sun
,
C. T.
, 2005, “
Cohesive Zone Modeling of Interface Fracture in Elastic Bi-Materials
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
1805
1817
.
19.
de Borst
,
R.
, 2003, “
Numerical Aspects of Cohesive-Zone Models
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
1743
1757
.
20.
de Borst
,
R.
,
Remmers
,
J. J. C.
, and
Needleman
,
A.
, 2006, “
Mesh-Independent Discrete Numerical Representations of Cohesive-Zone Models
,”
Eng. Fract. Mech.
0013-7944,
73
, pp.
160
177
.
21.
Turon
,
A.
,
Davila
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
, 2007, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
0013-7944,
74
, pp.
1665
1682
.
22.
de Borst
,
R.
,
Remmers
,
J. J. C.
,
Needleman
,
A.
, and
Abellan
,
M. -A.
, 2004, “
Discrete vs Smeared Crack Models for Concrete Fracture: Bridging the Gap
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
28
, pp.
583
607
.
23.
de Borst
,
R.
, 2004, “
Damage, Material Instabilities, and Failure
,”
The Encyclopedia of Computational Mechanics
,
E.
Stein
,
R.
de Borst
, and
T. J. R.
Hughes
, eds.,
Wiley
,
Chichester
, Vol.
II
, pp.
335
375
.
24.
Brekelmans
,
W. A. M.
, and
de Vree
,
J. H. P.
, 1995, “
Reduction of Mesh Sensitivity in Continuum Damage Mechanics
,”
Acta Mech.
0001-5970,
110
, pp.
49
56
.
25.
Murakami
,
S.
, and
Liu
,
Y.
, 1995, “
Mesh Dependence in Local Approach to Creep Fracture
,”
Int. J. Damage Mech.
1056-7895,
4
, pp.
230
250
.
26.
Towashiraporn
,
P.
,
Subbarayan
,
G.
, and
Desai
,
C. S.
, 2005, “
A Hybrid Model for Computationally Efficient Fatigue Fracture Simulations at Microelectronic Assembly Interfaces
,”
Int. J. Solids Struct.
0020-7683,
42
(
15
), pp.
4468
4483
.
27.
Bhate
,
D.
,
Chan
,
D.
,
Subbarayan
,
G.
,
Chiu
,
T. C.
,
Gupta
,
V.
, and
Edwards
,
D.
, 2008, “
Constitutive Behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu Older Alloys at Creep and Low Strain Rate Regimes
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
31
(
3
), pp.
622
633
.
28.
Bhate
,
D.
, 2008, “
Hierarchy in Fracture as a Stochastic Process: Model, Implementation, and Validation
,” Ph.D. thesis, Purdue University.
29.
de-Andrés
,
A.
,
Pérez
,
J. L.
, and
Ortiz
,
M.
, 1999, “
Elastoplastic Finite Element Analysis of Three-Dimensional Fatigue Crack Growth in Aluminum Shafts Subjected to Axial Loading
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
2231
2258
.
30.
ABAQUS® Analysis User’s Manual, Version 6.7, Dassault Systèmes.
31.
Chan
,
D.
,
Bhate
,
D.
,
Subbarayan
,
G.
, and
Nguyen
,
L.
, 2009, “
Characterization of Crack Fronts in a WLCSP Package: Experiments and Models for Application of a Multiscale Fracture Theory
,” ASME Paper No. IPACK2009-89402.
You do not currently have access to this content.