This study details the fabrication and measurements of a water-filled 5 mm wide by 10 mm long silicon microheat pipe (MHP) array consisting of 22100μm square channels. This study is unique in that many experimental results reported in open literature are for single channel microheat pipes. The number of channels in the array and the fluid charge used here were optimized under a separate study. A number of experiments were carried out on the specimen MHPs to determine their effective thermal conductivity and comparisons were made with previous results found in literature. The testing methodology was designed to remove systematic biases and the array thermal performance measurements are reported in terms of a silicon equivalence by identically measuring an uncharged empty silicon array as a baseline measurement. Two separate water-filled specimens were made, independently tested, and are reported to have thermal conductivities of 261W/mK and 324W/mK, representing a silicon equivalence of 1.8 and 2.2, respectively. All testing was performed in a horizontal orientation.

1.
Peterson
,
G. P.
, 1992, “
Overview of Micro Heat Pipe Research And Development
,”
Appl. Mech. Rev.
0003-6900,
45
, pp.
175
189
.
2.
Cotter
,
T. P.
, 1984, “
Principles and Prospects of the Micro Heat Pipes
,”
Proceedings of the Eighth International Heat Pipe Conference
, pp.
328
335
.
3.
Badran
,
B.
,
Gerner
,
F. M.
,
Ramadas
,
P.
,
Henderson
,
T.
, and
Baker
,
K. W.
, 1997, “
Experimental Results for Low-Temperature Silicon Micromachined Micro Heat Pipe Arrays Using Water and Methanol as Working Fluids
,”
Exp. Heat Transfer
0891-6152,
10
, pp.
253
272
.
4.
Le Berre
,
M.
,
Pandraud
,
G.
,
Morfouli
,
P.
, and
Lallemand
,
M.
, 2006, “
The Performance of Micro Heat Pipes Measured by Integrated Sensors
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
1047
1050
.
5.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
, pp.
126
129
.
6.
Peterson
,
G. P.
,
Duncan
,
A. B.
,
Ahmed
,
A. S.
,
Mallik
,
A. K.
, and
Weichold
,
M. H.
, 1991, “
Experimental Investigation of Micro Heat Pipes in Silicon Wafers
,”
Winter Annual Meeting of the American Society of Mechanical Engineers
,
Atlanta, GA
, Dec. 1–6.
7.
Weichold
,
M. H.
,
Peterson
,
G. P.
, and
Mallik
,
A. K.
, 1993, “
A Micro Heat Pipe Catheter for Local Tumor Hyperthermia
,” U.S. Patent No. 5,179,043.
8.
Peterson
,
G. P.
, and
Ma
,
H. B.
, 1995, “
Theoretical Analysis of the Maximum Heat Transport in Triangular Grooves: A Study of Idealized Micro Heat Pipes
,”
Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition. Part 1 (of 2)
,
San Francisco, CA
, Nov. 12–17.
9.
Mallik
,
A. K.
, and
Peterson
,
G. P.
, 1995, “
Steady-State Investigation of Vapor Deposited Micro Heat Pipe Arrays
,”
ASME J. Electron. Packag.
1043-7398,
117
, pp.
75
81
.
10.
Wu
,
D.
,
Peterson
,
G. P.
, and
Chang
,
W. S.
, 1991, “
Transient Experimental Investigation of Micro Heat Pipes
,”
J. Thermophys. Heat Transfer
0887-8722,
5
, pp.
539
544
.
11.
Babin
,
B. R.
,
Peterson
,
G. P.
, and
Wu
,
D.
, 1990, “
Steady State Modeling of a Micro Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
595
601
.
12.
Park
,
J. S.
,
Choi
,
J. H.
,
Cho
,
H. C.
,
Yang
,
S. S.
, and
Yoo
,
J. S.
, 2001, “
Flat Micro Heat Pipe Arrays for Cooling and Thermal Management at the Package Level
,”
Proceedings of the SPIE-The International Society for Optical Engineering, Design, Test, Integration, and Packaging of MEMS/MOEMS 2001
,
Cannes, France
, Apr. 25–27.
13.
Kang
,
S. -W.
,
Tsai
,
S. -H.
, and
Chen
,
H. -C.
, 2002, “
Fabrication and Test of Radial Grooved Micro Heat Pipes
,”
Appl. Therm. Eng.
1359-4311,
22
, pp.
1559
1568
.
14.
Le Berre
,
M.
,
Launay
,
S.
,
Sartre
,
V.
, and
Lallemand
,
M.
, 2003, “
Fabrication and Experimental Investigation of Silicon Micro Heat Pipes for Cooling Electronics
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
436
441
.
15.
Lee
,
M.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2003, “
Characterization of an Integrated Micro Heat Pipe
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
58
64
.
16.
Simionescu
,
F.
,
Meir
,
A. J.
, and
Harris
,
D. K.
, 2006, “
Approximation of an Optimal Convective Heat Transfer Coefficient
,”
Opt. Control Appl. Methods
0143-2087,
27
, pp.
237
253
.
17.
Wonacott
,
G. D.
,
Harris
,
D. K.
,
Dean
,
R.
,
Palmer
,
M.
,
Ellis
,
C.
,
Kolozs
,
R.
,
Hayden
,
S.
, and
Wilson
,
J.
, 2008, “
Near Room Temperature Process for Bonding and Sealing Silicon Devices and Wafers Using Indium Cold Welding
,” U.S. Patent USPTO 60/771,810.
18.
Lai
,
A.
,
Gillot
,
C.
,
Ivanova
,
M.
,
Avenas
,
Y.
,
Louis
,
C.
,
Schaeffer
,
C.
, and
Fournier
,
E.
, 2004, “
Thermal Characterization of Flat Silicon Heat Pipes
,”
20th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (IEEE Cat. No. 04CH37545)
,
IEEE
,
San Jose, CA
, pp.
21
25
.
19.
Moon
,
S. H.
,
Hwang
,
G.
,
Ko
,
S. C.
, and
Kim
,
Y. T.
, 2004, “
Experimental Study on the Thermal Performance of Micro-Heat Pipe With Cross-Section of Polygon
,”
Microelectron. Reliab.
0026-2714,
44
, pp.
315
321
.
20.
Tio
,
K. -K.
,
Liu
,
C. Y.
, and
Toh
,
K. C.
, 2000, “
Thermal Analysis of Micro Heat Pipes Using a Porous-Medium Model
,”
Heat and Mass Transfer
0947-7411,
36
, pp.
21
28
.
21.
Taylor
,
J. R.
, 1997,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
,
2nd ed.
,
University Science
,
Sausalito, CA
.
You do not currently have access to this content.