A finite element method was developed to predict the effective thermal conductivity of particle filled epoxy composites. Three-dimensional models, which considered the effect of filler geometry, filler aspect ratio, conductivity ratio of filler to matrix, and interfacial layer were used to simulate the microstructure of epoxy composites for various filler volume fractions up to 30%. The calculated thermal conductivities were compared with results from existing theoretical models and experiments. Numerical estimation of ellipsoids-in-cube model accurately predicted thermal conductivity of epoxy composites with alumina filler particles. The number of length division during mesh process and particle numbers used in the finite element analysis affect the accuracy of calculated results. At a given value of filler content, the numerical results indicated a ratio of conductivity of filler to matrix for achieving the maximum thermal conductivity.

1.
Peng
,
S.
, and
Landel
,
R.
, 1975, “
Induced Anisotropy of Thermal Conductivity of Polymer Solids Under Large Strains
,”
J. Appl. Polym. Sci.
0021-8995,
19
(
1
), pp.
49
68
.
2.
Choy
,
C. L.
, and
Young
,
K.
, 1977, “
Thermal Conductivity of Semicrystalline Polymers—A Model
,”
Polymer
0032-3861,
18
(
8
), pp.
769
776
.
3.
Griesinger
,
A.
,
Hurler
,
W.
, and
Pietralla
,
M.
, 1997, “
A Photothermal Method With Step Heating for Measuring the Thermal Diffusivity of Anisotropic Solids
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
13
), pp.
3049
3058
.
4.
Bujard
,
P.
,
Kühnlein
,
S.
,
Ino
,
S.
, and
Shiobara
,
T.
, 1994, “
Thermal Conductivity of Molding Compounds for Plastic Packaging
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
17
(
4
), pp.
527
532
.
5.
Zhou
,
W. Y.
,
Qi
,
S. H.
,
Tu
,
C. C.
, and
Zhao
,
H. Z.
, 2007, “
Novel Heat-Conductive Composite Silicon Rubber
,”
J. Appl. Polym. Sci.
0021-8995,
104
(
4
), pp.
2478
2483
.
6.
Hsieh
,
C. Y.
, and
Chung
,
S. L.
, 2006, “
High Thermal Conductivity Epoxy Molding Compound Filled With a Combustion Synthesized AlN Powder
,”
J. Appl. Polym. Sci.
0021-8995,
102
(
5
), pp.
4734
4740
.
7.
Kumlutaş
,
D.
,
Tavman
,
İ. H.
, and
Çoban
,
M. T.
, 2003, “
Thermal Conductivity of Particle Filled Polyethylene Composite Materials
,”
Compos. Sci. Technol.
0266-3538,
63
(
1
), pp.
113
117
.
8.
Pezzotti
,
G.
,
Kamada
,
I.
, and
Miki
,
S.
, 2000, “
Thermal Conductivity of AlN/Polystyrene Interpenetrating Networks
,”
J. Eur. Ceram. Soc.
0955-2219,
20
(
8
), pp.
1197
1203
.
9.
Xie
,
S. H.
,
Zhu
,
B. K.
,
Li
,
J. B.
,
Wei
,
X. Z.
, and
Xu
,
Z. K.
, 2004, “
Preparation and Properties of Polyimide/Aluminum Nitride Composites
,”
Polym. Test.
0142-9418,
23
(
7
), pp.
797
801
.
10.
Richard
,
F. H.
, and
Peter
,
H. S.
, 2002, “
Thermal Conductivity of Platelet-Filled Polymer Composites
,”
J. Am. Ceram. Soc.
0002-7820,
85
(
4
), pp.
851
857
.
11.
Price
,
D. M.
, and
Jarratt
,
M.
, 2002, “
Thermal Conductivity of PTFE and PTFE Composites
,”
Thermochim. Acta
0040-6031,
392–393
, pp.
231
236
.
12.
Li
,
H. Y.
,
Jacob
,
K. I.
, and
Wong
,
C. P.
, 2003, “
An Improvement of Thermal Conductivity of Underfill Materials for Flip-Chip Packages
,”
IEEE Trans. Adv. Packag.
1521-3323,
26
(
1
), pp.
25
32
.
13.
Procter
,
P.
, and
Solc
,
J.
, 1991, “
Improved Thermal Conductivity in Microelectronic Encapsulants
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
14
(
4
), pp.
708
713
.
14.
Lee
,
G. W.
,
Park
,
M.
,
Kim
,
J. K.
,
Lee
,
J. I.
, and
Yoon
,
H. G.
, 2006, “
Enhanced Thermal Conductivity of Polymer Composites Filled With Hybrid Filler
,”
Composites, Part A
1359-835X,
37
(
5
), pp.
727
734
.
15.
Bujard
,
P.
, 1988, “
Thermal Conductivity of Boron Nitride Filled Epoxy Resin: Temperature Dependence and Influence of Sample Preparation
,”
Proceedings of the Thermal Phenomena in the Fabrication and Operation of Electronic Components: I-Therm ‘88, InterSociety Conference
, pp.
41
49
.
16.
Bae
,
J. W.
,
Kim
,
W. H.
, and
Cho
,
S. H.
, 2000, “
The Properties of AlN-Filled Epoxy Molding Compounds by the Effects of Filler Size Distribution
,”
J. Mater. Sci.
0022-2461,
35
(
23
), pp.
5907
5913
.
17.
He
,
H.
,
Fu
,
R. L.
,
Shen
,
Y.
,
Han
,
Y. C.
, and
Song
,
X. F.
, 2007, “
Preparation and Properties of Si3N4/PS Composites Used for Electronic Packaging
,”
Compos. Sci. Technol.
0266-3538,
67
(
11–12
), pp.
2493
2499
.
18.
Lee
,
W. S.
, and
Yu
,
J.
, 2005, “
Comparative Study of Thermally Conductive Fillers in Underfill for the Electronic Components
,”
Diamond Relat. Mater.
0925-9635,
14
(
10
), pp.
1647
1653
.
19.
Chen
,
Y. M.
, and
Ting
,
J. M.
, 2002, “
Ultra High Thermal Conductivity Polymer Composites
,”
Carbon
0008-6223,
40
(
3
), pp.
359
362
.
20.
Fu
,
S. Y.
, and
Mai
,
Y. W.
, 2003, “
Thermal Conductivity of Misaligned Short-Fiber-Reinforced Polymer Composites
,”
J. Appl. Polym. Sci.
0021-8995,
88
(
6
), pp.
1497
1505
.
21.
Maxwell
,
J. C.
, 1954,
A Treatise on Electricity and Magnetism
,
3rd ed.
,
Dover
,
New York
.
22.
Tsao
,
G. T. N.
, 1961, “
Thermal Conductivity of Two Phase Materials
,”
Ind. Eng. Chem.
0019-7866,
53
(
5
), pp.
395
397
.
23.
Cheng
,
S. C.
, and
Vachon
,
R. I.
, 1969, “
The Prediction of the Thermal Conductivity of Two and Three Phase Solid Heterogeneous Mixtures
,”
Int. J. Heat Mass Transfer
0017-9310,
12
(
3
), pp.
249
264
.
24.
Scarisbrick
,
R. M.
, 1973, “
Electrically Conductivity Mixtures
,”
J. Phys. D
0022-3727,
6
(
17
), pp.
2098
2110
.
25.
Lewis
,
T.
, and
Nielsen
,
L.
, 1970, “
Dynamic Mechanical Properties of Particulate-Filled Polymers
,”
J. Appl. Polym. Sci.
0021-8995,
14
(
6
), pp.
1449
1471
.
26.
Padilla
,
A.
,
Sanchez-Solis
,
A.
, and
Manero
,
O.
, 1988, “
A Note on Thermal Conductivity of Filled Polymers
,”
J. Compos Mater.
,
22
(
7
), pp.
616
628
.
27.
Russell
,
H. W.
, 1935, “
Principles of Heat Flow in Porous Insulation
,”
J. Am. Ceram. Soc.
0002-7820,
18
(
1–12
), pp.
1
5
.
28.
Agari
,
Y.
, and
Uno
,
T.
, 1985, “
Thermal Conductivity of Polymer Filled With Carbon Materials: Effect of Conductive Particle Chains on Thermal Conductivity
,”
J. Appl. Polym. Sci.
0021-8995,
30
(
5
), pp.
2225
2235
.
29.
Agari
,
Y.
,
Ueda
,
A.
, and
Nagai
,
S.
, 1991, “
Thermal Conductivity of Polyethylene Filled With Disoriented Short-Cut Carbon Fibers
,”
J. Appl. Polym. Sci.
0021-8995,
43
(
6
), pp.
1117
1124
.
30.
Agari
,
Y.
,
Ueda
,
A.
, and
Nagai
,
S.
, 1993, “
Thermal Conductivity of a Polymer Composite
,”
J. Appl. Polym. Sci.
0021-8995,
49
(
9
), pp.
1625
1634
.
31.
Ramani
,
K.
, and
Vaidyanathan
,
A.
, 1995, “
Finite Element Analysis of Effective Thermal Conductivity of Filled Polymeric Composites
,”
J. Compos. Mater.
0021-9983,
29
(
13
), pp.
1725
1740
.
32.
Kumlutas
,
D.
, and
Tavman
,
I. H.
, 2006, “
A Numerical and Experimental Study on Thermal Conductivity of Particle Filled Polymer Composites
,”
J. Thermoplast Compos. Mater.
,
19
(
4
), pp.
441
455
.
33.
Yin
,
Y.
, and
Tu
,
S. T.
, 2002, “
Thermal Conductivity of PTFE Composites With Random Distributed Graphite Particles
,”
J. Reinf. Plast. Comp.
,
21
(
18
), pp.
1619
1627
.
34.
Tu
,
S. T.
,
Cai
,
W. Z.
,
Yin
,
Y.
, and
Ling
,
X.
, 2005, “
Numerical Simulation of Saturation Behavior of Physical Properties in Composites With Randomly Distributed Second-phase
,”
J. Compos. Mater.
0021-9983,
39
(
7
), pp.
617
631
.
35.
Cai
,
W. Z.
,
Tu
,
S. T.
, and
Tao
,
G. L.
, 2005, “
Thermal Conductivity of PTFE Composites With Three-Dimensional Randomly Distributed Fillers
,”
J. Thermoplast. Compos. Mater.
,
18
(
3
), pp.
241
253
.
36.
Munro
,
R. G.
, 1997, “
Evaluated Material Properties for a Sintered α-Alumina
,”
J. Am. Ceram. Soc.
0002-7820,
80
(
8
), pp.
1919
1928
.
37.
Sridhar
,
L.
, and
Narh
,
K. A.
, 2000, “
Finite Size Gap Effects on the Modeling of Thermal Contact Conductance at Polymer-Mold Wall Interface in Injection Molding
,”
J. Appl. Polym. Sci.
0021-8995,
75
(
14
), pp.
1776
1782
.
You do not currently have access to this content.