Heat transfer enhancement associated with use of a nanofluid coolant is analyzed for small electronic heat sinks. The analysis is based on the ε-NTU heat exchanger methodology, and is used to examine enhancement associated with use of H2OAl2O3 nanofluids in a heat sink experiencing turbulent flow. Predictive correlations are generated to ascertain the degree of enhancement based on the fluid’s thermophysical properties. The enhancement is quite small, suggesting the limited usefulness of nanofluids in this particular application.

1.
Schmidt
,
R.
, 2004, “
Challenges in Electronic Cooling—Opportunities for Enhanced Thermal Management Techniques—Microprocessor Liquid Cooled Minichannel Heat Sink
,”
Heat Transfer Eng.
0145-7632,
25
(
3
), pp.
3
12
.
2.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, 2004, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
1531-7331,
34
, pp.
219
246
.
3.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
, 2006, “
Heat Transfer in Nanofluids–A Review
,”
Heat Transfer Eng.
0145-7632,
27
, pp.
3
19
.
4.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
, 2008, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
0145-7632,
29
, pp.
432
460
.
5.
Eapen
,
J.
,
Williams
,
W. C.
,
Buongiorno
,
J.
,
Hu
,
L. -W.
,
Yip
,
S.
,
Rusconi
,
R.
, and
Piazza
,
R.
, 2007, “
Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction
,”
Phys. Rev. Lett.
0031-9007,
99
, pp.
095901
.
6.
Eapen
,
J.
,
Li
,
J.
, and
Yip
,
S.
, 2007, “
Beyond the Maxwell Limit: Thermal Conduction in Nanofluids With Percolating Fluid Structures
,”
Phys. Rev. E
1063-651X,
76
, pp.
062501
.
7.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
, 2008, “
Thermal Conductance of Nanofluids: Is the Controversy Over?
,”
J. Nanopart. Res.
1388-0764,
10
, pp.
1089
1097
.
8.
Nguyen
,
C. T.
,
Roy
,
G.
,
Cauthier
,
C.
, and
Galanis
,
A.
, 2007, “
Heat Transfer Enhancement Using Al2O3—Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
1501
1506
.
9.
Lee
,
J.
, and
Mudawar
,
I.
, 2007, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
452
463
.
10.
Bergman
,
T. L.
, 2009, “
Effect of Reduced Specific Heats of Nanofluids on Single Phase, Laminar Internal Convection
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1240
1244
. 0017-9310
11.
Webb
,
R. L.
, 2007, “
Heat Exchanger Design Methodology for Electronic Heat Sinks
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
899
901
.
12.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
Hoboken
.
13.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
, 1992, “
Heat Sink Optimization With Applications to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
, pp.
832
842
.
14.
Xie
,
X. L.
,
Tao
,
W. Q.
, and
He
,
Y. L.
, 2007, “
Numerical Study of Turbulent Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Microchannel Heat Sink
,”
ASME J. Electron. Packag.
1043-7398,
129
, pp.
247
255
.
15.
Ebadian
,
M. A.
, and
Dong
,
Z. F.
, 1998, “
Forced Convection, Internal Flow in Ducts
,”
Handbook of Heat Transfer
,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
Y. I.
Cho
, eds.,
McGraw Hill
,
New York
, p.
5.72
.
16.
Zhou
,
S. -Q.
, and
Ni
,
R.
, 2008, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
093123
.
17.
Wang
,
L.
,
Tan
,
Z.
,
Meng
,
S.
,
Liang
,
D.
, and
Li
,
G.
, 2001, “
Enhancement of Molar Heat Capacity of Nanostructured Al2O3
,”
J. Nanopart. Res.
1388-0764,
3
, pp.
483
487
.
18.
Lee
,
S.
,
Choi
,
S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
19.
Lee
,
J. -H.
,
Hwang
,
K. S.
,
Jang
,
S. P.
,
Lee
,
B. H.
,
Kim
,
J. H.
,
Choi
,
S. U. S.
, and
Choi
,
C. J.
, 2008, “
Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2651
2656
.
20.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
, 2006, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
133108
.
You do not currently have access to this content.