A finite element analysis approach is developed and used to efficiently evaluate and optimize the boiling performance of longitudinal rectangular plate fin heat sinks, including the explicit dependence of fin spacing on boiling heat transfer coefficients and on the critical heat flux (CHF). Polished silicon heat sinks are shown to dissipate at nearly five times the CHF limit of the unfinned base area and outperform comparable aluminum heat sinks by a factor of 2. For optimum heat sink geometries, over the parameter ranges explored, the fin thickness is found to be approximately equal to the fin spacing, and the relationship between the optimum thickness and spacing is demonstrated to be relatively insensitive to the fin thermal conductivity. Results suggest that even greater performance enhancements may be gained with appropriately-selected advanced materials.

1.
Bar-Cohen
,
A.
, 1999, “
Thermal Packaging for the 21st Century: Challenges and Options
,”
Fifth Therminic—International Workshop Thermal Investigations of ICs and Systems
,
Rome, Italy
,
10
∕3–
6
.
2.
Danielson
,
R.
,
Krajewski
,
N.
, and
Brost
,
J.
, 1986, “
Cooling a Superfast Computer
,”
Electronic Packaging and Production
,
26
(
7
), pp.
44
45
.
3.
Carlson
,
D. M.
,
Sullivan
,
D. C.
,
Bach
,
R. E.
, and
Resnick
,
D. R.
, 1989, “
The ETA 10 Liquid-Nitrogen-Cooled Supercomputer System
,”
IEEE Trans. Electron Devices
0018-9383,
36
(
8
), pp.
1404
1413
.
4.
Ing
,
P.
,
Sperry
,
R.
,
Philstrom
,
R.
,
Claybaker
,
P.
,
Webster
,
J.
, and
Cress
,
S.
, 1993, “
SS-1 Supercomputer Cooling
,”
Proceedings of the 1993 IEEE ECTC Conference
, pp.
219
237
.
5.
Pautsch
,
G.
, 2001, “
Electronic Packaging of the CRAY SV2 Supercomputer
,”
Proceedings of the PACIFIC RIM∕International, Intersociety, Electronic Packaging Technical∕Business Conference and Exhibition
, pp.
1
8
.
6.
Zuber
,
N.
, 1958, “
On the Stability of Boiling Heat Transfer
,”
Trans. ASME
0097-6822,
80
(
1
), pp.
711
720
.
7.
ITRS
, “
The International Technology Roadmap for Semiconductors
,” http://www.itrs.nethttp://www.itrs.net, 2005.
8.
Mudawar
,
I.
, and
Anderson
,
T. M.
, 1993, “
Optimization of Enhanced Surfaces for High Flux Chip Cooling by Pool Boiling
,”
ASME J. Electron. Packag.
1043-7398,
115
(
1
), pp.
89
100
.
9.
O’Connor
,
J. P.
, and
You
,
S. M.
, 1995, “
A Painting Technique to Enhance Pool Boiling Heat Transfer in Saturated FC-72
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
387
393
.
10.
Baldwin
,
C.
,
Bhavnani
,
S.
, and
Jaeger
,
R. C.
, 2000, “
Toward Optimizing Enhanced Surfaces for Passive Immersion Cooled Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
1
), pp.
70
79
.
11.
Arik
,
M.
,
Bar-Cohen
,
A.
, and
You
,
S. M.
, 2007, “
Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids by Microporous Coatings
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
997
1009
.
12.
Lee
,
T. Y. T.
, and
Normington
,
P. J. C.
, 1993, “
Application of Dielectric Binary Mixtures in Electronic Cooling-Nucleate Pool Boiling Regime
,”
Advances in Electronic Packaging, ASME
,
4
(
2
), pp.
927
935
.
13.
Avedisian
,
C. T.
, and
Purdy
,
D. J.
, 1993, “
Experimental Study of Pool Boiling Critical Heat Flux of Binary Fluid Mixtures on an Infinitive Horizontal Surface
,”
Advances in Electronic Packaging
,
4
(
2
), pp.
909
915
.
14.
Arik
,
M.
, 2001, “
Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
15.
Klein
,
G. J.
, and
Westwater
,
J. W.
, 1971, “
Heat Transfer From Multiple Spines to Boiling Liquids
,”
AIChE J.
0001-1541,
17
(
5
), pp.
1050
1056
.
16.
Geisler
,
K. J. L.
, 2007, “
Buoyancy-Driven Two Phase Flow and Boiling Heat Transfer in Narrow Vertical Channels
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
17.
Geisler
,
K. J. L.
, and
Bar-Cohen
,
A.
, 2005, “
Surface Effects on Confinement-Driven Pool Boiling Enhancement in Vertical Parallel-Plate Channels
,” ASME Paper No. HT2005-72666.
18.
Bonjour
,
J.
, and
Lallemand
,
M.
, 1997, “
Effects of Confinement and Pressure on Critical Heat Flux During Natural Convective Boiling in Vertical Channels
,”
Int. Commun. Heat Mass Transfer
0735-1933,
24
(
2
), pp.
191
200
.
19.
Haley
,
K. W.
, and
Westwater
,
J. W.
, 1966, “
Boiling Heat Transfer From Single Fins
,” Proceedings of the Third International Heat Transfer Conference,
AIChE J.
0001-1541,
3
, pp.
245
253
.
20.
Unal
,
H. C.
, 1987, “
Analytic Study of Boiling Heat Transfer From a Fin
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
2
), pp.
341
349
.
21.
Liaw
,
S. P.
, and
Yeh
,
R. H.
, 1994, “
Fins With Temperature Dependent Surface Heat Flux—I. Single Heat Transfer Mode
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
10
), pp.
1509
1515
.
22.
Liaw
,
S. P.
, and
Yeh
,
R. H.
, 1994, “
Fins With Temperature Dependent Surface Heat Flux—II. Multi-Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
10
), pp.
1517
1524
.
23.
Lin
,
W. W.
, and
Lee
,
D. J.
, 1996, “
Boiling on a Straight Pin Fin
,”
AIChE J.
0001-1541,
42
(
10
), pp.
2721
2728
.
24.
Lin
,
W. W.
, and
Lee
,
D. J.
, 1999, “
Boiling on a Straight Pin Fin With Variable Thermal Conductivity
,”
Heat Mass Transfer
0947-7411,
34
(
5
), pp.
381
386
.
25.
Bu
,
Y.
,
Kraus
,
A. D.
, and
Chung
,
B. T. F.
, 2000, “
Heat Transfer Characteristics for a Single Fin in a Boiling Liquid
,”
Proceedings of the ASME Heat Transfer Division
, pp.
161
168
.
26.
Nakayama
,
W.
,
Nakajima
,
T.
, and
Hirasawa
,
S.
, 1984, “
Heat Sink Studs Having Enhanced Boiling Surfaces for Cooling Microelectronic Components
,” ASME Paper No. 84-WA∕HT-89.
27.
Incropera
,
F. P.
, and
De Witt
,
D. P.
, 1996,
Introduction to Heat Transfer
,
Wiley
,
New York
.
28.
1995,
Properties of Silicon Carbide
,
G. L.
Harris
, ed.,
Institution of Electrical Engineers
, London.
You do not currently have access to this content.