Electronics packaging design is a process that requires optimized solutions based on multidisciplinary design trade-offs, which usually have complex relationships among multiple design variables. Required numerical analyses combining electrical, thermal, and thermomechanical, among others, have made the multidisciplinary design and optimization process more challenging because of their time-intensive modeling and computation. In this paper, a state-of-the-art review of recent multidisciplinary design and optimization methodologies in electronics packaging is presented. The reported methodologies are divided into three groups: (1) integrated multidisciplinary computer aided design (CAD) environment, (2) semi-automated design optimization techniques, and (3) automated component placement techniques. In the first group, multidisciplinary design and optimization are carried out using interactive CAD environment software. The electronics packaging designer inputs data and makes decisions, while the CAD software provides a comprehensive multidisciplinary modeling and simulation environment. In the second group, using semi-automated design optimization methodologies, various objectives are optimized simultaneously mainly based on package configurations (dimensions), material properties, and operating conditions. In the third group, optimal placement of heat generating components is performed automatically based on multiple requirements. In recent years, methodologies using (1) detailed numerical analysis models directly connected to optimization algorithms, (2) design of experiments (DoE), and (3) artificial neural networks (ANNs) have been proposed as new trends in this field. These methodologies have led to significant improvement in design optimization capabilities, while they require intensive computational effort. Advantages as well as disadvantages of these methods are discussed.

1.
De Kock
,
D. J.
,
Visser
,
J. A.
,
Nair
,
R.
,
Nagulapally
,
M.
, and
Nigen
,
J.
, 2005, “
Mathematical Optimization of Electronic Enclosures
,”
Proceeding of the ASME InterPACK
,
San Francisco, CA
.
2.
Scholand
,
A. J.
,
Fulton
,
R. E.
, and
Bras
,
B.
, 1999, “
Investigation of PWB Layout by Genetic Algorithms to Maximize Fatigue Life
,”
ASME J. Electron. Packag.
1043-7398,
121
(
1
), pp.
31
36
.
3.
Queipo
,
N. V.
,
Humphrey
,
J. A. C.
, and
Ortega
,
A.
, 1998, “
Multiobjective Optimal Placement of Convectively Cooled Electronic Components on Printed Wiring Boards
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
21
(
1
), pp.
142
153
.
4.
Stoyanov
,
S.
,
Bailey
,
C.
, and
Cross
,
M.
, 2002, “
Optimisation Modelling for Flip-Chip Solder Joint Reliability
,”
Soldering Surf. Mount Technol.
0954-0911,
14
(
1
), pp.
49
58
.
5.
Tsai
,
C.-H.
, and
Kang
,
S.-M.
, 2000, “
Cell-Level Placement for Improving Substrate Thermal Distribution
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
19
(
2
), pp.
253
266
.
6.
Belady
,
C. L.
, and
Minichiello
,
A.
, 2003, “
Effective Thermal Design for Electronic Systems
,”
Electronics Cooling
,
9
(
2
), pp.
16
21
.
7.
Tummala
,
R.
, 2001,
Fundamentals of Microsystems Packaging
,
McGraw-Hill
,
New York
.
8.
Lasance
,
C. J. M.
, 1995, “
The Need for a Change in Thermal Design Philosophy
,”
Electronics Cooling
,
1
(
2
), pp.
24
26
.
9.
Lindell
,
M.
,
Stoaks
,
P.
,
Carey
,
D.
, and
Sandborn
,
P.
, 1998, “
The Role of Physical Implementation in Virtual Prototyping of Electronic Systems
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
21
, pp.
611
616
.
10.
Zhang
,
G. Q.
,
Bisschop
,
J.
, and
Maessen
,
P.
, 2001, “
Virtual Thermo-Mechanical Prototyping of Microelectronics Products—Towards Optimized Designing in Reliability
,”
Adv. Microelectron.
,
28
(
1
), http://www.imaps.org/adv_micro/2001jan_feb/2.htmlhttp://www.imaps.org/adv_micro/2001jan_feb/2.html.
11.
Francois-Saint-Cyr
,
A.
, 2005, “
Technical Brief: Solve Thermal Issues Earlier in Updated Board Designs
,”
Electronics Cooling
,
11
(
1
), pp.
36
38
.
12.
Sandborn
,
P. A.
, and
Vertal
,
M.
, 1998, “
Analyzing Packaging Trade-Offs During System Design
,”
IEEE Des. Test
,
15
(
3
), pp.
10
19
. 0740-7475
13.
Glover
,
R.
, 1996, “
PCB Leapfrogs Into System-Level Design
,”
Electronic Design
,
44
(
7
), pp.
83
84
.
14.
Fulton
,
R. E.
, 1995, “
Trends in Electronic Mechanical CAD Integration
,”
Proceedings of the ASME InterPACK
,
Maui, HI
.
15.
Coulibaly
,
I.
, 1998, “
METHODIC: A New CAD for Electrothermal Coupling Simulation in Power Converters
,”
Proceedings of the Industrial Electronics Conference
,
Aachen, Germany
.
16.
Sandborn
,
P. A.
, and
McFall
,
G.
, 1996, “
Performing Design for Environment Concurrent With Interdisciplinary Tradeoff Analysis of Electronic Systems
,”
Proceedings of the ISEE-1996
,
Dallas, TX
.
17.
Pesare
,
M.
,
Giorgio
,
A.
,
Passaro
,
V. M. N.
, and
Perri
,
A. G.
, 2000, “
Electrothermal Modelling of GaAs MESFETs
,”
Int. J. Electron.
0020-7217,
87
(
10
), pp.
1163
1170
.
18.
Denis
,
D.
,
Hunter
,
I. C.
, and
Snowden
,
C. M.
, 2005, “
Design of Power FETs Based on Coupled Electro-Thermal-Electromagnetic Modeling
,”
Proceedings of the IEEE MTT-S International Microwave Symposium
.
19.
Choksi
,
G.
,
Immaneni
,
L.
,
Karunakaran
,
R.
,
Lin
,
Y. C.
,
Stys
,
D.
, and
Wyllie
,
M.
, 1995, “
Package Design Advisor—Mechanical, Electrical and Thermal Analysis in One CAD Tool
,”
Proceedings of the IEEE Electronic Components and Technology
,
Las Vegas, NV
.
20.
Farbarik
,
R.
,
Liu
,
X.
,
Rossman
,
M.
,
Parakh
,
P.
,
Basso
,
T.
, and
Brown
,
R.
, 1997, “
CAD Tools for Area-Distributed I/O Pad Packaging
,”
Proceedings of the IEEE MCMC ‘97
,
Santa Cruz, CA
.
21.
Blood
,
W.
, and
Lai
,
A.
, 1998, “
Early Analysis of Chip Scale Package Design Trade-Offs
,”
Proceedings of the IEEE IC/Package Design Integration
,
Santa Cruz, CA
.
22.
Wu
,
P.
,
Chen
,
K.
, and
Tzou
,
J.
, 1997, “
ViperBGA: A Novel Design Approach to High Performance and High Density BGA’s
,”
Proceedings of the Electronic Manufacturing Technology Symposium
.
23.
Wilde
,
J.
,
Staiger
,
W.
,
Thoben
,
M.
,
Schuch
,
B.
, and
Kilian
,
H.
, 1998, “
Integration of Liquid Cooling Thermal and Thermomechanical Design for the Lifetime Prediction of Electrical Power Modules
,”
Proceedings of the SAE International Congress and Exposition
,
Detroit, MI
.
24.
Cwik
,
T.
,
Katz
,
D. S.
, and
Villegas
,
F.
, 2001, “
Integrated Design and Simulation for Millimeter-Wave Antenna Systems
,”
Proceedings of the IEEE Aerospace Conference
,
Big Sky, MT
.
25.
Staton
,
D. A.
, 2001, “
Thermal Computer Aided Design-Advancing the Revolution in Compact Motors
,”
Proceedings of the Electric Machines and Drives Conference
.
26.
Przekwas
,
A.
, 1999, “
Integrated Multidisciplinary CAD/CAE Environment for Micro-Electro-Mechanical Systems (MEMS)
,”
Proceedings of the SPIE International Society Optical Engineering
,
Paris, France
.
27.
Stout
,
P.
,
Yang
,
H. Q.
,
Dionne
,
P.
,
Leonard
,
A.
,
Tan
,
Z.
,
Przekwas
,
A.
, and
Krishnan
,
A.
, 1999, “
CFD-ACE+MEMS: A CAD System for Simulation and Modeling of MEMS
,”
Proceedings of the SPIE International Society Optical Engineering
,
Paris, France
.
28.
Zhou
,
W. X.
,
Hsiung
,
C. H.
,
Fulton
,
R. E.
,
Yin
,
X. F.
,
Yeh
,
C. P.
, and
Wyatt
,
K.
, 1997, “
CAD-Based Analysis Tools for Electronic Packaging Design (A New Modeling Methodology for a Virtual Development Environment)
,”
Proceedings of the ASME InterPACK
,
Kohala Coast, HI
.
29.
Zhou
,
W. X.
, 1997, “
Modularized and Parametric Modeling Methodology for Concurrent Mechanical Design of Electronic Packaging
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
30.
Assouad
,
Y.
,
Etienne
,
P.
, and
Labaune
,
G.
, 1997, “
Thermal/EMC Optimization of Airborne Electronic Racks
,”
Proceedings of the International System Packaging Symposium
,
San Diego, CA
.
31.
Tian
,
X.
, and
Palusinski
,
O. A.
, 2002, “
Reliability, Thermal Analysis and Optimization Wirability Design of Multi-Layer PCB Boards
,”
Proceedings of the IEEE Reliability and Maintainability Symposium
,
Seattle, WA
.
32.
Mottahed
,
B. D.
, and
Manoochehri
,
S.
, 2000, “
Optimal Design of Electronic System Utilizing an Integrated Multidisciplinary Process
,”
IEEE Trans. Adv. Packag.
1521-3323,
23
, pp.
699
707
.
33.
Chen
,
R.
,
Canales
,
F.
,
Yang
,
B.
, and
van Wyk
,
J. D.
, 2002, “
Volumetric Optimal Design of Passive Integrated Power Electronic Module (IPEM) for Distributed Power System (DPS) Front-End DC/DC Converter
,” Proceedings of the Industry Applications Conference, 37th IAS Annual Meeting, Vol.
3
, pp.
1758
1765
.
34.
Larouci
,
C.
,
Ferrieux
,
J. P.
,
Gerbaud
,
L.
,
Roudet
,
J.
, and
Keradec
,
J. P.
, 2002, “
Volume Optimization of a PFC Flyback Structure Under Electromagnetic Compatibility, Loss and Temperature Constraints
,”
Proceedings of the IEEE Power Electronics Specialists Conference
,
Cairns, Australia
.
35.
Blaabjerg
,
F.
, and
Pedersen
,
J. K.
, 1997, “
Optimized Design of a Complete Three-Phase PWM-VS Inverter
,”
IEEE Trans. Power Electron.
0885-8993,
12
(
3
), pp.
567
577
.
36.
Wagner
,
G. R.
, 2000, “
Optimization of the Arcticooler for Lowest Thermal Resistance in a Minimum Volume
,”
Proceedings of the ITHERM
,
Las Vegas, NV
.
37.
Loh
,
C. K.
,
Nelson
,
D.
, and
Chou
,
D. J.
, 2001, “
Optimization of the Fan-Heat Sink Systems in Portable Electronics Environment
,”
Proceedings of the SPIE HD International Conference on High-Density Interconnect and Systems Packaging
,
Santa Clara, CA
.
38.
Zhang
,
W.
,
Lee
,
F. C.
, and
Chen
,
D. Y.
, 2000, “
Integrated EMI/Thermal Design for Switching Power Supplies
,”
Proceedings of the Power Electronics Specialists Conference
.
39.
Rieh
,
J.-S.
,
Greenberg
,
D.
,
Liu
,
Q.
,
Joseph
,
A. J.
,
Freeman
,
G.
, and
Ahlgren
,
D. C.
, 2005, “
Structure Optimization of Trench-Isolated SiGe HBTs for Simultaneous Improvements in Thermal and Electrical Performances
,”
IEEE Trans. Electron Devices
0018-9383,
52
(
12
), pp.
2744
2752
.
40.
Li
,
P.
,
Deng
,
Y.
, and
Pileggi
,
L. T.
, 2005, “
Temperature-Dependent Optimization of Cache Leakage Power Dissipation
,”
Proceedings of the International Conference on Computer Design
.
41.
Chen
,
S.-C.
, and
Culpepper
,
M. L.
, 2005, “
Design and Optimization of Thermomechanical Actuator Via Contour Shaping
,”
Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems
.
42.
Chen
,
J. Z.
,
Wu
,
Y.
,
Gence
,
C.
,
Boroyevich
,
D.
, and
Bohn
,
J. H.
, 2001, “
Integrated Electrical and Thermal Analysis of Integrated Power Electronics Modules Using iSIGHT
,”
Proceedings of the IEEE APEC
,
Anaheim, CA
.
43.
Stoyanov
,
S.
,
Bailey
,
C.
,
Lu
,
H.
, and
Cross
,
M.
, 2001, “
Solder Joint Reliability Optimization
,”
Proceedings of the APACK
,
Singapore
.
44.
Stoyanov
,
S.
,
Bailey
,
C.
,
Lu
,
H.
, and
Cross
,
M.
, 2002, “
Integrated Computational Mechanics and Optimization for Design of Electronic Components
,”
Optimization in Industry
,
I. C.
Parmee
and
P.
Hajela
, eds.,
Springer-Verlag
,
London
, pp.
57
70
.
45.
Hossain
,
M. M.
,
Jagarkal
,
S. G.
,
Agonafer
,
D.
,
Lulu
,
M.
, and
Reh
,
S.
, 2007, “
Design Optimization and Reliability of PWB Level Electronic Package
,”
ASME J. Electron. Packag.
1043-7398,
129
(
1
), pp.
9
18
.
46.
Hadim
,
H.
, and
Suwa
,
T.
, 2005, “
A Multidisciplinary Design and Optimization Methodology for Ball Grid Array Packages Using Artificial Neural Networks
,”
ASME J. Electron. Packag.
1043-7398,
127
(
3
), pp.
306
313
.
47.
Wang
,
T.-Y.
,
Tsai
,
J.-L.
, and
Chung-Ping Chen
,
C.
, 2004, “
Thermal and Power Integrity Based Power/Ground Networks Optimization
,”
Proceedings of the Design, Automation and Test in Europe Conference and Exhibition
.
48.
Nagata
,
M.
,
Swart
,
N.
,
Stevens
,
M.
, and
Nathan
,
A.
, 1995, “
Thermal Based Micro Flow Sensor Optimization Using Coupled Electrothermal Numerical Simulations
,”
Proceedings of the International Conference on Solid-State Sensors and Actuators, and Eurosensors
,
Stockholm, Sweden
.
49.
Beratlis
,
N.
, and
Smith
,
M. K.
, 2003, “
Optimization of Synthetic Jet Cooling for Microelectronics Applications
,”
Proceedings of the IEEE SEMI-THERM
,
San Jose, CA
.
50.
Chen
,
G.
,
Rentzch
,
M.
,
Wang
,
F.
,
Boroyevich
,
D.
,
Ragon
,
S.
,
Stefanovic
,
V.
, and
Arpilliere
,
M.
, 2003, “
Analysis and Design Optimization of Front-End Passive Components for Voltage Source Inverters
,”
Proceedings of the IEEE APEC
,
Miami Beach, FL
.
51.
Rajan
,
S. D.
, and
Nagaraj
,
B.
, 1995, “
Towards Enhancing the Life of Plastic Power Packages Using Design Optimization
,”
Proceedings of the ASME InterPACK
,
Maui, HI
.
52.
Liu
,
D.-S.
,
Ni
,
C.-Y.
, and
Chen
,
C.-Y.
, 2003, “
Integrated Design Method for Flip Chip CSP With Electrical, Thermal and Thermo-Mechanical Qualifications
,”
Finite Elem. Anal. Design
,
39
(
7
), pp.
661
677
. 0168-874X
53.
Xu
,
L.
,
Reinikainen
,
T.
,
Ren
,
W.
,
Wang
,
B. P.
,
Han
,
Z.
, and
Agonafer
,
D.
, 2004, “
A Simulation-Based Multi-Objective Design Optimization of Electronic Packages Under Thermal Cycling and Bending
,”
Microelectron. Reliab.
,
44
(
12
), pp.
1977
1983
. 0026-2714
54.
Suwa
,
T.
, and
Hadim
,
H.
, 2007, “
Multidisciplinary Electronic Package Design and Optimization Methodology Based on Genetic Algorithm
,”
IEEE Trans. Adv. Packag.
1521-3323,
30
(
3
), pp.
402
410
.
55.
Xiong
,
G.
,
Lu
,
M.
,
Chen
,
C.-L.
,
Wang
,
B. P.
, and
Kehl
,
D.
, 2001, “
Numerical Optimization of a Power Electronics Cooling Assembly
,”
Proceedings of the IEEE APEC
,
Anaheim, CA
.
56.
Cheng
,
Y.-H.
, and
Lin
,
W.-K.
, 2005, “
Geometric Optimization of Thermoelectric Coolers in a Confined Volume Using Genetic Algorithms
,”
Appl. Therm. Eng.
1359-4311,
25
(
17-18
), pp.
2983
2997
.
57.
Cimtalay
,
S.
,
Peak
,
R. S.
, and
Fulton
,
R. E.
, 1996, “
Optimization of Solder Joint Fatigue Life Using Product Model-Based Analysis Models
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Atlanta, GA
.
58.
Stoyanov
,
S.
,
Bailey
,
C.
, and
Cross
,
M.
, 2001, “
Integrating Computational Mechanics and Numerical Optimization for the Design of Material Properties in Electronic Packages
,”
Proceedings of the Conference on Computational Modeling of Materials, Minerals and Metals
,
San Diego, CA
.
59.
Stoyanov
,
S.
,
Bailey
,
C.
, and
Lu
,
H.
, 2001, “
Optimization Tools for Flip-Chip Design
,”
Proceedings of the ASME InterPACK
,
Kauai, HI
.
60.
Stoyanov
,
S.
, and
Bailey
,
C.
, 2003, “
Optimisation and Finite Element Analysis for Reliable Electronic Packaging
,”
Proceedings of the EuroSIME
,
Aix-en-Provence, France
.
61.
Meinzer
,
S.
,
Quinte
,
A.
,
Gorges-Schleuter
,
M.
,
Jakob
,
W.
,
Suss
,
W.
, and
Eggert
,
H.
, 1996, “
Simulation and Design Optimization of Microsystems Based on Standard Simulators and Adaptive Search Techniques
,”
Proceedings of the Design Automation Conference
.
62.
Wu
,
W.
,
Dunlop
,
J. B.
,
Collocott
,
S. J.
, and
Kalan
,
B. A.
, 2003, “
Design Optimization of a Switched Reluctance Motor by Electromagnetic and Thermal Finite-Element Analysis
,”
IEEE Trans. Magn.
0018-9464,
39
(
5
), pp.
3334
3336
.
63.
Momen
,
M. F.
, and
Husain
,
I.
, 2003, “
Optimizing the Design and Performance of a Switched Reluctance Machine Using Lumped Parameter Thermal Model
,”
Proceedings of the International Electric Machines and Drives Conference
.
64.
Icoz
,
T.
, and
Jaluria
,
Y.
, 2006, “
Design Optimization of Size and Geometry of Vortex Promoter in a Two-Dimensional Channel
,”
ASME J. Heat Transfer
0022-1481,
128
(
10
), pp.
1081
1092
.
65.
Deshpande
,
A. M.
,
Subbarayan
,
G.
, and
Mahajan
,
R. L.
, 1996, “
Global Approximation Concepts for Optimal Design of Electronic Packages
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exhibition
,
Atlanta, GA
.
66.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1998, “
Optimization for Thermal and Electrical Wiring for a Flip-Chip Package Using Physical-Neural Network Modeling
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part C
1083-4400,
21
(
2
), pp.
111
117
.
67.
Sridhar
,
S.
, and
Eggink
,
H. J.
, 1999, “
Dealing With Uncertainty in Power Loss Estimates in Thermal Design of Power Electronic Circuits
,”
Proceedings of the Industry Applications Conference
,
Phoenix, AZ
.
68.
Zhang
,
G. Q.
,
Tay
,
A. A. O.
,
Ernst
,
L. J.
,
Liu
,
S.
,
Qian
,
Z. F.
,
Bressers
,
H. J. L.
, and
Janssen
,
J.
, 2001, “
Virtual Thermo-Mechanical Prototyping of Electronic Packaging Challenges in Material Characterization and Modeling
,”
Proceedings of the Electronic Components and Technology Conference
,
Orlando, FL
.
69.
Khalilollahi
,
A.
, and
Warley
,
R. L.
, 2005, “
Thermal Stress Reduction and Optimization for Orthotropic Composite Boards
,”
Proceedings of the ASME Summer Heat Transfer Conference
,
San Francisco, CA
.
70.
Khalilollahi
,
A.
,
Warley
,
R. L.
, and
Onipede
,
O.
, 2005, “
Thermal Reliability Design and Optimization for Multilayer Composite Electronic Boards
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
.
71.
Wu
,
X.
,
Qian
,
Z.
, and
Wang
,
Y.
, 2005, “
Integrated Reliability Solutions for New Component Development and Designs Optimization
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
.
72.
Chang
,
C.-L.
, and
Lin
,
W.-S.
, 2003, “
Robust Multiple Criteria Optimization of Thermally Enhanced PQFP
,”
J. Chin. Soc. Mech. Eng.
0257-9731 Trans. Chin. Inst. Eng. Ser. C,
24
(
1
), pp.
73
80
.
73.
Tsai
,
C.-H.
, and
Kang
,
S.-M. S.
, 1999, “
Macrocell Placement With Temperature Profile Optimization
,”
Proceedings of the ISCAS
,
Orlando, FL
.
74.
Tsai
,
C.-H.
, and
Kang
,
S.-M.
, 2000, “
Substrate Thermal Model Reduction for Efficient Transient Electrothermal Simulation
,”
Proceedings of the IEEE Mixed-Signal Design, SSMSD
,
San Diego, CA
.
75.
Chen
,
G.
, and
Sapatnekar
,
S.
, 2003, “
Partition-Driven Standard Cell Thermal Placement
,”
Proceedings of the International Symposium on Physical Design
,
Monterey, CA
.
76.
Suwa
,
T.
, and
Hadim
,
H.
, 2006, “
Multidisciplinary Heat Generating Cell Placement Optimization Using Genetic Algorithm and Artificial Neural Networks
,”
Proceedings of the AIAA/ASME Joint Thermophysics and Heat Transfer Conference
,
San Francisco, CA
.
77.
Goplen
,
B.
, and
Sapatnekar
,
S.
, 2003, “
Efficient Thermal Placement of Standard Cells in 3D ICs Using a Force Directed Approach
,”
Proceedings of the International Conference on Computer Aided Design
,
San Jose, CA
.
78.
Balakrishnan
,
K.
,
Nanda
,
V.
,
Easwar
,
S.
, and
Lim
,
S. K.
, 2005, “
Wire Congestion and Thermal Aware 3D Global Placement
,”
Proceedings of the Asia and South Pacific Design Automation Conference
.
79.
Hung
,
W.
,
Addo-Quaye
,
C.
,
Theocharides
,
T.
,
Xie
,
Y.
,
Vijakrishnan
,
N.
, and
Irwin
,
M. J.
, 2004, “
Thermal-Aware IP Virtualization and Placement for Networks-On-Chip Architecture
,”
Proceedings of the IEEE International Conference Computer Design: VLSI in Computers and Processors
.
80.
Sankaranarayanan
,
K.
,
Velusamy
,
S.
,
Stan
,
M. R.
, and
Skadron
,
K.
, 2005, “
A Case for Thermal-Aware Floorplanning at the Microarchitectural Level
,”
The Journal of Instruction-Level Parallelism
,
8
, pp.
1
16
, http:// www.jilp.org/vol7/v7paper15.pdfhttp:// www.jilp.org/vol7/v7paper15.pdf.
81.
Hung
,
W.-L.
,
Xie
,
Y.
,
Vijaykrishnan
,
N.
,
Addo-Quaye
,
C.
,
Theocharides
,
T.
, and
Irwin
,
M. J.
, 2005, “
Thermal-Aware Floorplanning Using Genetic Algorithms
,”
Proceedings of the International Symposium Quality of Electronic Design
,
San Jose, CA
.
82.
Sato
,
T.
,
Ichimiya
,
J.
,
Ono
,
N.
,
Hachiya
,
K.
, and
Hashimoto
,
M.
, 2005, “
On-Chip Thermal Gradient Analysis and Temperature Flattening for SoC Design
,”
IEICE Trans. Fundamentals
,
E88-A
(
12
), pp.
3382
3388
. 1046-8021
83.
Cong
,
J.
,
Wei
,
J.
, and
Zhang
,
Y.
, 2004, “
A Thermal-Driven Floorplanning Algorithm for 3D ICs
,”
Proceedings of the IEEE/ACM International Conference on Computer Aided Design
,
Santa Clara, CA
.
84.
Cong
,
J.
, and
Zhang
,
Y.
, 2005, “
Thermal-Driven Multilevel Routing for 3-D ICs
,”
Proceedings of the Asia South Pacific Design Automation Conference
,
Shanghai, China
.
85.
Goplen
,
B.
, and
Sapatnekar
,
S. S.
, 2006, “
Placement of Thermal Vias in 3-D ICs Using Various Thermal Objectives
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
25
(
4
), pp.
692
709
.
86.
Chao
,
K. Y.
, and
Wong
,
D. F.
, 1995, “
Thermal Placement for High-Performance Multichip Modules
,”
Proceedings of the IEEE International Conference Computer Design
,
Austin, TX
.
87.
Lampaert
,
K.
,
Gielen
,
G.
, and
Sansen
,
W.
, 1997, “
Thermally Constrained Placement of Smart-Power IC’s and Multi-Chip Modules
,”
Proceedings of the IEEE SEMI-THERM XIII
,
Austin, TX
.
88.
Beebe
,
C.
,
Carothers
,
J. D.
, and
Ortega
,
A.
, 1999, “
Object-Oriented Thermal Placement Using an Accurate Heat Model
,”
Proceedings of the HICSS-32
,
Maui, HI
.
89.
Beebe
,
C.
,
Carothers
,
J. D.
, and
Ortega
,
A.
, 2000, “
MCM Placement Using a Realistic Thermal Model
,”
Proceedings of the Great Lakes Symposium on VLSI
,
Chicago, IL
.
90.
Lee
,
J.
,
Chou
,
J.-H.
, and
Fu
,
S.-L.
, 1995, “
Reliability and Wirability Optimizations for Module Placement on a Convectively Cooled Printed Wiring Board
,”
Integr., VLSI J.
0167-9260,
18
(
2-3
), pp.
173
186
.
91.
Mihan
,
K. K.
,
Stacey
,
B. J.
, and
Montor
,
T.
, 1995, “
Interdisciplinary Design Optimization for High-Speed Packages and Interconnects
,”
Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering
,
Montreal, Canada
.
92.
Queipo
,
N. V.
, and
Gil
,
G. F.
, 2000, “
Multiobjective Optimal Placement of Convectively and Conductively Cooled Electronic Components on Printed Wiring Boards
,”
ASME J. Electron. Packag.
1043-7398,
122
(
2
), pp.
152
159
.
93.
Queipo
,
N. V.
, and
Gil
,
G. F.
, 1997, “
Multiobjective Optimization of Component Placement on Planar Printed Wiring Boards
,”
Proceedings of the IEEE SEMI-THERM XIII
,
Austin, TX
.
94.
Queipo
,
N. V.
,
Humphrey
,
J. A. C.
, and
Ortega
,
A.
, 1996, “
Multiobjective Optimization of Component Placement on Printed Wiring Boards
,”
Proceedings of the IEEE I-THERM V
,
Orlando, FL
.
95.
Iwata
,
Y.
,
Hayashi
,
S.
,
Satoh
,
R.
, and
Fujmoto
,
K.
, 2005, “
Circuit-Thermal Collaboration Design Method for Outline Design Stage of Mobile Terminal
,”
Proceedings of the ASME InterPACK
,
San Francisco, CA
.
96.
Deb
,
K.
,
Jain
,
P.
,
Gupta
,
N. K.
, and
Maji
,
H. K.
, 2004, “
Multiobjective Placement of Electronic Components Using Evolutionary Algorithms
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
3
), pp.
480
492
. 1521-3331
97.
Suwa
,
T.
, and
Hadim
,
H.
, 2007, “
Multidisciplinary Placement Optimization of Heat Generating Electronic Components on Printed Circuit Boards
,”
ASME J. Electron. Packag.
1043-7398,
129
(
1
), pp.
90
97
.
98.
Suwa
,
T.
, and
Hadim
,
H.
, 2007, “
Multidisciplinary Placement Optimization of Heat Generating Electronic Components on a Printed Circuit Board in an Enclosure
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
3
), pp.
402
410
. 1521-3331
99.
Gopinath
,
D.
,
Joshi
,
Y. K.
, and
Azarm
,
S.
, 2001, “
Multi-Objective Placement Optimization of Power Electronic Devices on Liquid Cooled Heat Sinks
,”
Proceedings of the Annual IEEE Symposium
,
San Jose, CA
.
100.
Gopinath
,
D.
,
Joshi
,
Y.
, and
Azarm
,
S.
, 2005, “
An Integrated Methodology for Multiobjective Optimal Component Placement and Heat Sink Sizing
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
4
), pp.
869
876
. 1521-3331
101.
Campbell
,
I. M.
,
Amon
,
H. C.
, and
Cagan
,
J.
, 1997, “
Optimal Three-Dimensional Placement of Heat Generating Electronic Components
,”
ASME J. Electron. Packag.
1043-7398,
119
(
2
), pp.
106
113
.
102.
Campbell
,
I. M.
,
Cagan
,
J.
,
Amon
,
H. C.
, and
Szykman
,
S.
, 1995, “
Electronic Component Placement Using Simulated Annealing Under Thermal Constraints
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
San Francisco, CA
.
103.
Jackson
,
B.
, and
Norgard
,
J.
, 2002, “
A Stochastic Optimization Tool for Determining Spacecraft Avionics Box Placement
,”
Proceedings of the IEEE Aerospace Conference
,
Big Sky, MT
.
104.
Kaczorowski
,
P. R.
,
Joshi
,
Y.
, and
Azarm
,
S.
, 2003, “
Multi-Objective Design of Liquid Cooled Power Electronic Modules for Transient Operation
,”
Proceedings of the IEEE SEMI-THERM
,
San Jose, CA
.
105.
Lee
,
J.
, and
Chou
,
J.-H.
, 1996, “
Hierarchical Placement for Power Hybrid Circuits Under Reliability and Wireability Constraints
,”
IEEE Trans. Reliab.
0018-9529,
45
, pp.
200
207
.
106.
Huang
,
Y.
, and
Fu
,
S.
, 2000, “
Thermal Placement Design for MCM Applications
,”
ASME J. Electron. Packag.
1043-7398,
122
(
2
), pp.
115
120
.
107.
Huang
,
Y.-J.
,
Fu
,
S.-L.
,
Jen
,
S.-L.
, and
Guo
,
M.-H.
, 2001, “
Fuzzy Thermal Modeling for MCM Placement
,”
Microelectron. J.
0026-2692,
32
(
10-11
), pp.
863
868
.
108.
Huang
,
Y.-J.
, and
Guo
,
M.-H.
, 2001, “
Fuzzy Thermal Placement for Multichip Module Applications
,”
Fuzzy Sets Syst.
0165-0114,
122
(
2
), pp.
185
194
.
109.
Lee
,
J.
, 2003, “
Thermal Placement Algorithm Based on Heat Conduction Analogy
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
2
), pp.
473
482
.
110.
Lee
,
J.
, 2005, “
Reliability and Wireability Optimizations for Chip Placement on Multichip Modules
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
28
(
2
), pp.
133
141
.
111.
Chu
,
C. C. N.
, and
Wong
,
D. F.
, 1998, “
A Matrix Synthesis Approach to Thermal Placement
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
17
(
11
), pp.
1166
1174
.
112.
Newbould
,
R. D.
, and
Carothers
,
J. D.
, 2003, “
Cluster Growth Revisited: Fast, Mixed-Signal Placement of Blocks and Gates
,”
Proceedings of the Southwest Symposium Mixed-Signal Design
,
Las Vegas, NV
.
113.
Kaisare
,
A.
,
Agonafer
,
D.
,
Haji-Shiekh
,
A.
,
Chriysler
,
G.
, and
Mahajan
,
R.
, 2005, “
Thermal Based Optimization of Functional Block Distributions in a Non-Uniformly Powered Die
,”
Proceedings of the ASME InterPack
,
San Francisco, CA
.
114.
Miettinen
,
K.
, 1999,
Nonlinear Multiobjective Optimization
,
Springer
,
Boston
.
115.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
, 2002, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
1089-778X,
6
(
2
), pp.
182
197
.
116.
Icoz
,
T.
, and
Jaluria
,
Y.
, 2005, “
Optimization of Vortex Promoter Design Using a Dynamic Data Driven Approach
,”
Proceedings of the ASME Summer Heat Transfer Conference
,
San Francisco, CA
.
You do not currently have access to this content.