We present an investigation into the effect of the motion of a printed circuit board (PCB) on the response of a microelectromechanical system (MEMS) device to shock loads. A two-degrees-of-freedom model is used to model the motion of the PCB and the microstructure, which can be a beam or a plate. The mechanical shock is represented as a single point force impacting the PCB. The effects of the fundamental natural frequency of the PCB, damping, shock pulse duration, electrostatic force, and their interactions are investigated. It is found that neglecting the PCB effect on the modeling of MEMS under shock loads can lead to erroneous predictions of the microstructure motion. Further, contradictory to what is mentioned in literature that a PCB, as a worst-case scenario, transfers the shock pulse to the microstructure without significantly altering its shape or intensity, we show that a poor design of the PCB or the MEMS package may result in severe amplification of the shock effect. This amplification can cause early pull-in instability for MEMS devices employing electrostatic forces.

1.
Alajoki
,
M.
,
Nguyen
,
N.
, and
Kivilahti
,
J.
, 2005, “
Drop Test Reliability of Wafer Level Chip Scale Packages
,”
Proceedings of 55th Electronic Components and Technology Conference
,
Lake Buena Vista, FL
, Vol.
1
, pp.
637
644
.
2.
Srikar
,
V.
, and
Senturia
,
S.
, 2002, “
The Reliability of Microelectromechanical Systems (MEMS) in Shock Environments
,”
J. Microelectromech. Syst.
1057-7157,
11
(
3
), pp.
206
214
.
3.
Fan
,
M. S.
, and
Shaw
,
H. C.
, 2001, “
Dynamic Response Assessment for the MEMS Accelerometer Under Severe Shock Loads
,” National Aeronautics and Space Administration NASA, Report No. TP-2001-209978.
4.
Chang
,
H.
,
Qian
,
J.
,
Cetiner
,
B.
,
Flaviis
,
F.
,
Bachman
,
M.
, and
Li
,
G.
, 2005, “
Design and Processes Consideration for Fabrication RF MEMS Switches on Printed Circuit Boards
,”
J. Microelectromech. Syst.
1057-7157,
14
(
6
), pp.
1311
1322
.
5.
Ghaffarian
,
R.
,
Sutton
,
D.
,
Chaffee
,
P.
,
Marquez
,
N.
,
Sharma
,
A.
, and
Teverovsky
,
A.
, 2002, “
Thermal and Mechanical Reliability of Five COTS MEMS Accelerometers
,” NASA Electronic Parts and Packaging Program, http://nepp.nasa.gov/eeelinks/February2002/Thermal_and_Mechanical_Reliability.pdfhttp://nepp.nasa.gov/eeelinks/February2002/Thermal_and_Mechanical_Reliability.pdf
6.
Ken
,
G.
, 2000, “
MEMS PCB Assembly Challenge
,”
Circuits Assem.
1054-0407,
11
(
3
), pp.
62
70
.
7.
Gogoi
,
B.
,
Vujosevic
,
M.
, and
Petrovic
,
S.
, 2000, “
Challenges in MEMS Packaging
,”
Proceedings of the SMIT International Conference
,
Rosemont, IL
, pp.
775
783
.
8.
Beeby
,
S.
,
Ensell
,
G.
,
Kraft
,
M.
, and
White
,
N.
, 2004,
MEMS Mechanical Sensors
,
Artech House
,
Boston, MA
.
9.
Bigdeli
,
S.
, 2003, “
Material and Reliability Requirements for MEMS Packaging
” Project, Santa Clara University, http://www.sjsu.edu/faculty/selvaduray/page/papers/mate234/soheilbigdeli.pdfhttp://www.sjsu.edu/faculty/selvaduray/page/papers/mate234/soheilbigdeli.pdf.
10.
Wagner
,
U.
,
Franz
,
J.
,
Schweiker
,
M.
,
Bernhard
,
W.
,
Muller-Fiedler
,
R.
, and
Paul
,
O.
, 2001, “
Mechanical Reliability of MEMS-Structures Under Shock Loads
,”
Microelectron. Reliab.
0026-2714,
41
, pp.
1657
1662
.
11.
Li
,
G.
, and
Shemansky
,
F.
, Jr.
, 2000, “
Drop Test Analysis on Micro-Machined Structures
,”
Sens. Actuators, A
0924-4247,
85
, pp.
280
286
.
12.
De Coster
,
J.
,
Tilmans
,
H.
,
Van Beek
,
J.
,
Rijks
,
G.
, and
Puers
,
R.
, 2004, “
The Influence of Mechanical Shock on the Operation of Electrostatically Driven RF-MEMS Switches
,”
J. Micromech. Microeng.
0960-1317,
14
(
9
), pp.
S49
S54
.
13.
Younis
,
M. I.
,
Miles
,
R.
, and
Jordy
,
D.
, 2006, “
Investigation of the Response of Microstructures Under the Combined Effect of Mechanical Shock and Electrostatic Forces
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
2463
2474
.
14.
Younis
,
M. I.
,
Alsaleem
,
F.
,
Miles
,
R.
, and
Su
,
Q.
, 2007, “
Characterization of the Performance of Capacitive Switches Activated by Mechanical Shock
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
1360
1370
.
15.
Younis
,
M. I.
,
Jordy
,
D.
, and
Pitarresi
,
J.
, 2007, “
Computationally Efficient Approaches to Characterize the Dynamic Response of Microstructures Under Mechanical Shock
,”
J. Microelectromech. Syst.
1057-7157,
16
, pp.
628
638
.
16.
Jiang
,
Y.
,
Du
,
M.
,
Huang
,
W.
,
Xu
,
W.
, and
Luo
,
L.
, 2003, “
Simulation on the Encapsulation Effect of the High-g Shock MEMS Accelerometer
,”
Proceedings of the Fifth International Conference on Electronic Packaging Technology
, Vol.
28
, pp.
52
55
.
17.
Shetye
,
D. M.
, 2004, “
Drop Response of a Silicon Microacoustic Sensor
,” MS thesis, State University of New York at Binghamton, Vestal, NY.
18.
Bart
,
S.
,
Zhang
,
S.
,
Rabinovich
,
V.
, and
Cunningham
,
S.
, 1999, “
Coupled Package-Device Modeling for MEMS
,”
Proceedings of MSM 99
,
San Juan, PR
.
19.
Younis
,
M. I.
,
Al Saleem
,
F.
, and
Jordy
,
D.
, 2007, “
The Response of Clamped-Clamped Microbeams Under Mechanical Shock
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
643
657
.
20.
Suhir
,
E.
, 2005, “
Structural Analysis of Microelectronic and Photonic Systems
,” Proceedings of ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging, pp.
907
919
.
21.
Steinberg
,
D. S.
, 2000,
Vibration Analysis for Electronic Equipment
,
3rd ed.
,
Wiley Interscience
,
New York
.
22.
Suhir
,
E.
, and
Burke
,
R.
, 1994, “
Dynamic Response of a Rectangular Plate to a Shock Load, With Application to Potable Electronic Products
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
1070-9894,
17
(
3
), pp.
449
460
.
23.
Suhir
,
E.
, 2002, “
Could Shock Tests Adequately Mimic Drop Test Conditions?
,”
ASME J. Electron. Packag.
1043-7398,
124
(
3
), pp.
170
177
.
24.
Pitarresi
,
J. M.
, and
Primavera
,
A.
, 1992, “
Comparison of Modeling Techniques for the Vibration Analysis of Printed Circuit Cards
,”
ASME J. Electron. Packag.
1043-7398,
114
(
4
), pp.
378
383
.
25.
Suhir
,
E.
, 1996, “
Dynamic Response of a One-Degree-of-Freedom Linear System to a Shock Load During Drop Tests: Effect of Viscous Damping
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
19
(
3
), pp.
435
440
.
26.
Suhir
,
E.
, 1992, “
Nonlinear Dynamic Response of a Printed Circuit Board to Shock Loads Applied to Its Support Contour
,”
ASME J. Electron. Packag.
1043-7398,
114
(
4
), pp.
368
377
.
27.
Wong
,
E. H.
, 2005, “
Dynamics of Board-Level Drop Impact
,”
ASME J. Electron. Packag.
1043-7398,
127
(
3
), pp.
200
207
.
28.
Keltie
,
R. F.
,
Falter
,
K. J.
, 1993, “
Guidelines for the Use of Approximations in Shock Response Analysis of Electronic Assemblies
,”
ASME J. Electron. Packag.
1043-7398,
115
(
1
), pp.
124
130
.
29.
Wong
,
E. H.
,
Mai
,
Y. W.
, and
Seah
,
S. K.
, 2005, “
Board Level Drop Impact: Fundamental and Parametric Analysis
,”
ASME J. Electron. Packag.
1043-7398,
127
(
4
), pp.
496
502
.
30.
Dally
,
J. W.
, 1990,
Packaging of Electronic System, A Mechanical Engineering Approach
,
McGraw-Hill
,
New York
.
31.
Hernried
,
A. G.
, and
Sackman
,
J. L.
, 1968, “
The Two-Degree-of-Freedom Equipment Structure System
,”
ASME J. Electron. Packag.
1043-7398,
112
(
6
), pp.
621
628
.
32.
Abdel-Rahman
,
M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2002, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
795
766
.
33.
Hernried
,
A. G.
, and
Sackman
,
J. L.
, 1968, “
The Two-Degree-of-Freedom Equipment Structure System
,”
J. Micromech. Microeng.
0960-1317,
112
(
6
), pp.
621
628
.
34.
Alsaleem
,
F. M.
,
Younis
,
M. I.
, and
Ibrahim
,
M.
, “
A Study for the Effect of the PCB Motion on the Dynamics of MEMS Devices Under Mechanical Shock
,”
J. Microelectromech. Syst
, submitted.
35.
Harris
,
C. M.
, 2002,
Shock and Vibration Handbook
,
5th ed.
,
McGraw-Hill
,
New York
.
36.
Lalanne
,
C.
, 2002,
Mechanical Vibration and Shock: Mechanical Shock Volume
,
Hermes Penton Ltd.
,
London
.
37.
Cui
,
W.
, 2005, “
Analysis, Design and Fabrication of a Novel Silicon Microphone
,” Ph.D. thesis, State University of New York at Binghamton, Vestal, NY.
You do not currently have access to this content.