Over upcoming electronics technology nodes, shrinking feature sizes of on-chip interconnects and correspondingly higher current densities are expected to result in higher temperatures due to self-heating. This study describes a finite element based compact thermal modeling approach to investigate the effects of Joule heating on complex interconnect structures. In this method, interconnect cross section is assumed to be isothermal and conduction along the interconnect is retained. A composite finite element containing both metal and dielectric regions is used to discretize the interconnect stack. The compact approach predicts the maximum temperature rise in the metal to within 5–10% of the detailed numerical computations, while requiring only a fraction of elements. Computational time for the compact model solution is several seconds, versus many hours for the detailed solutions obtained through successive mesh refinement until grid independence is achieved. For a comparable number of elements, the compact model is in general much more accurate than the traditional finite element approach. To validate the simulations, temperature rise in a 500-link two-layer interconnect with a via layer was measured at several current densities. The compact method predicts the temperature rise of the 500-link chain to within 5% of the measurements thereby validating the method. The approach described here could be an efficient technique for full chip Joule heating simulations and for clock signal propagation simulations, which are performed as part of designing next generation chip architectures.

1.
Treichel
,
H.
, 2001, “
Low Dielectric Constant Materials
,”
J. Electron. Mater.
0361-5235,
30
, pp.
290
298
.
3.
Ho
,
P. S.
, and
Kwok
,
T.
, 1988, “
Electromigration in Metals
,”
Rep. Prog. Phys.
0034-4885,
52
, pp.
301
348
.
4.
Black
,
J. R.
, 1969, “
Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices
,”
IEEE Trans. Electron Devices
0018-9383,
57
(
9
), pp.
1587
1594
.
5.
Shen
,
Y.-L.
, 1999, “
Analysis of Joule Heating in Multilevel Interconnects
,”
J. Vac. Sci. Technol. B
0734-211X,
17
, pp.
2115
2121
.
6.
Banerjee
,
K.
,
Mehrotra
,
A.
,
Hunter
,
W.
,
Saraswat
,
K. C.
,
Goodson
,
K. E.
, and
Wong
,
S. S.
, 2000, “
Quantitative Projections of Reliability and Performance for Low-k/Cu Interconnect Systems
,”
Proceedings of the 38th IEEE Annual International Reliability Physics Symposium (IRPS)
,
San Jose, CA
, pp.
354
358
.
7.
Streiter
,
R.
,
Wolf
,
H.
,
Zhu
,
Z.
,
Xiao
,
X.
, and
Gessner
,
T.
, 2002, “
Application of Combined Thermal and Electrical Simulation for Optimization of Deep Submicron Interconnection Systems
,”
Microelectron. Eng.
0167-9317,
60
, pp.
39
49
.
8.
Kapur
,
P.
,
Chandra
,
G.
,
McVittie
,
J. P.
, and
Saraswat
,
K. C.
, 2002, “
Technology and Reliability Constrained Future Copper Interconnects—Part II: Performance Implications
,”
IEEE Trans. Electron Devices
0018-9383,
49
, pp.
598
604
.
9.
Ajami
,
A. H.
,
Pedram
,
M.
, and
Banerjee
,
K.
, 2001, “
Effects of Non-Uniform Substrate Temperature on the Clock Signal Integrity in High Performance Designs
,”
Proceedings of the IEEE 2001 Custom Integrated Circuits Conference
,
San Diego, CA
, pp.
233
236
.
10.
Bilotti
,
A. A.
, 1974, “
Static Temperature Distribution in IC Chips With Isothermal Heat Sources
,”
IEEE Trans. Electron Devices
0018-9383,
ED-21
, pp.
217
226
.
11.
Schafft
,
H. A.
, 1987, “
Thermal Analysis of Electromigration Test Structures
,”
IEEE Trans. Electron Devices
0018-9383,
ED-34
, pp.
664
672
.
12.
Chiang
,
T.-Y.
,
Banerjee
,
K.
, and
Saraswat
,
K. C.
, 2002, “
Analytical Thermal Model for Multilevel VLSI Interconnects Incorporating Via Effect
,”
IEEE Electron Device Lett.
0741-3106,
23
, pp.
31
33
.
13.
Teng
,
C.-C.
,
Cheng
,
Y.-K.
,
Rosenbaum
,
E.
, and
Kang
,
S.-M.
, 1997, “
iTEM: A Temperature-Dependent Electromigration Reliability Diagnosis Tool
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
16
, pp.
882
893
.
14.
Hunter
,
W. R.
, 1997, “
Self-Consistent Solutions for Allowed Interconnect Current Density—Part I: Implications for Technology Evolution
,”
IEEE Trans. Electron Devices
0018-9383,
44
, pp.
304
309
.
15.
Chen
,
D.
,
Li
,
E.
,
Rosenbaum
,
E.
, and
Kang
,
S.-M.
, 2000, “
Interconnect Thermal Modeling for Accurate Simulation of Circuit Timing and Reliability
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
19
, pp.
197
205
.
16.
Casu
,
M. R.
,
Graziano
,
M.
,
Masera
,
G.
,
Piccinini
,
G.
, and
Zamboni
,
M.
, 2003, “
Coupled Electro-Thermal Modeling and Optimization of Clock Networks
,”
Microelectron. J.
0026-2692,
34
, pp.
1175
1185
.
17.
Stan
,
M. R.
,
Skadron
,
K.
,
Barcella
,
M.
,
Huang
,
W.
,
Sankaranarayanan
,
K.
, and
Velusamy
,
S.
, 2003, “
HotSpot: A Dynamic Compact Thermal Model at the Processor-Architecture Level
,”
Microelectron. J.
0026-2692,
34
, pp.
1153
1165
.
18.
Huang
,
W.
,
Stan
,
M. R.
,
Skadron
,
K.
,
Sankaranarayanan
,
K.
,
Ghosh
,
S.
, and
Velusamy
,
S.
, 2004, “
Compact Thermal Modeling for Temperature-Aware Design
,”
Proceedings of the 41st Design Automation Conference
,
San Diego, CA
.
19.
Bar-Cohen
,
A.
,
Elperin
,
T.
, and
Eliasi
,
R.
, 1989, “
θjc Characterization of Chip Packages—Justification, Limitations, and Future
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
12
, pp.
724
731
.
20.
Rosten
,
H. I.
,
Lasance
,
C. J. M.
, and
Parry
,
J. D.
, 1997, “
The World of Thermal Characterization According to DELPHI—Part I: Background to DELPHI
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
20
, pp.
384
391
.
21.
Boyalakuntla
,
D. S.
, and
Murthy
,
J. Y.
, 2002, “
Hierarchical Compact Models for Simulation of Electronic Chip Packages
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
, pp.
192
203
.
22.
Adams
,
V. H.
,
Joshi
,
Y.
, and
Blackburn
,
D. L.
, 1997, “
Application of Compact Model Methodologies to Natural Convection Cooling of an Array of Electronic Packages in a Low Profile Enclosure
,”
Advances in Electronic Packaging 1997
,
E.
Suhir
,
M.
Shiratori
,
Y. C.
Lee
, and
G.
Subbarayan
, eds.,
ASME
,
New York
, Pt. 2, pp.
1967
1974
.
23.
Sabry
,
M.-N.
, 2004, “
Higher Order Compact Thermal Models
,”
Proceedings of the 10th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)
, Sophia Antipolis, Côte d’Azur, France,
TIMA Laboratory
,
Grenoble, France
, pp.
273
280
.
24.
Segerlind
,
L. J.
, 1984,
Applied Finite Element Analysis
,
2nd ed.
,
Wiley
,
New York
.
25.
Ramakrishna
,
K.
,
Gall
,
M.
,
Justison
,
P.
, and
Kawasaki
,
H.
, 2004, “
Prediction of Maximum Allowed RMS Currents for Electromigration Design Guidelines
,”
AIP Conf. Proc.
0094-243X,
741
, pp.
156
164
.
26.
Yovanovich
,
M. M.
,
Culham
,
J. R.
, and
Teertstra
,
P.
, 1998, “
Analytical Modeling of Spreading Resistance in Flux Tubes, Half Spaces, and Compound Disks
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
21
(
1
), pp.
168
176
.
27.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
, 1974, “
Thermal Conductivity of the Elements: A Comprehensive Review
,”
J. Phys. Chem. Ref. Data
0047-2689,
3
(
1
), pp.
1
796
.
28.
Griffin
,
A. J.
, Jr.
,
Brotzen
,
F. R.
, and
Loos
,
P. J.
, 1994, “
The Effective Transverse Thermal Conductivity of Amorphous Si3N4 Thin Films
,”
J. Appl. Phys.
0021-8979,
76
, pp.
4007
4011
.
29.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Process-Dependent Thermal Transport Properties of Silicon-Dioxide Films Deposited Using Low-Pressure Chemical Vapor Deposition
,”
J. Appl. Phys.
0021-8979,
85
, pp.
7130
7134
.
30.
Warkusz
,
F.
, 1987, “
Temperature Effects in Thin Metal Films
,”
Thin Solid Films
0040-6090,
148
, pp.
343
353
.
31.
Dean
,
J. A.
, 1999,
Lange’s Handbook of Chemistry
,
15th ed.
,
McGraw-Hill
,
New York
.
32.
Goodson
,
K. E.
,
Flik
,
M. I.
,
Su
,
L. T.
, and
Antoniadis
,
D. A.
, 1994, “
Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
574
581
.
You do not currently have access to this content.