Liquid cooling with phase change has been demonstrated to be a very efficient technique for thermal management of electronics because it has the potential to achieve high heat transfer coefficients compared to single phase liquid cooling. Previous studies on liquid immersion cooling with fluorocarbons have shown the effectiveness of boiling enhancement structures in lowering boiling incipience, raising the critical heat flux, and reducing evaporator size. Two-phase thermosyphons are an alternative to liquid immersion cooling, where phase change liquid cooling can be implemented within a closed-loop device. The present study involves a two-phase thermosyphon with boiling enhancement structure in the evaporator, which is subjected to subatmospheric pressures for lowering the saturation temperature of the working fluid. The objective of the present research is to provide a detailed understanding of the effect of liquid-fill level on boiling of water with enhancement structures at subatmospheric pressures. The study will take into account the influence of system pressure and enhancement structure geometry on the boiling heat transfer. Experiments were performed at three different pressures, 9.7kPa, 15kPa, and 21kPa, using a stacked enhancement structure with three different geometries (one, four, and six layers), corresponding to three different liquid-fill levels (fill ratios of 0.5, 0.7, and 0.9). The results are compared with a base line study on subatmospheric pressure boiling from a plain surface at similar liquid-fill levels.

1.
Aakalu
,
N. G.
,
Chu
,
R. E.
, and
Simons
,
R. E.
, 1973, “
Cooling System for Data Processing Equipment
,” U.S. Patent No. 3,741,292.
2.
Tengblad
,
N.
, and
Palm
,
B.
, 1996, “
External Two Phase Thermosiphons for Cooling of Electronic Components
,”
Int. J. Microcircuits Electron. Packag.
1063-1674,
19
(
1
), pp.
22
29
.
3.
Palm
,
B.
, and
Tengblad
,
N.
, 1996, “
Cooling of Electronics by Heat Pipes and Thermosyphons—A Review of Methods and Possibilities
,”
National Heat Transfer Conference
, HTD-Vol.
329
, Vol.
7
, pp.
97
108
.
4.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W. B.
, 1998, “
Performance of a Compact Two-Phase Thermosyphon: Effect of Evaporator Inclination, Liquid Fill Volume and Contact Resistance
,”
Proceedings of the 11th International Heat Transfer Conference
Kyongju, Korea
, Vol.
2
, pp.
127
132
.
5.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W. B.
, 1999, “
Compact Thermosyphons Employing Microfabricated Components
,”
Microscale Thermophys. Eng.
1089-3954,
3
, pp.
273
282
.
6.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W. B.
, 1999, “
Thermal Performance of a Compact Two-Phase Thermosyphon: Response to Evaporator Confinement and Transient Loads
,”
J. Enhanced Heat Transfer
1065-5131,
6
, pp.
279
288
.
7.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W. B.
, 2000, “
Combined Effects of Sub-Cooling and Operating Pressure on the Performance of a Two-Chamber Thermosyphon
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
1
), pp.
61
69
.
8.
Yuan
,
L.
,
Joshi
,
Y. K.
, and
Nakayama
,
W.
, 2000, “
Effect of Condenser Location and Imposed Circulation on the Performance of a Compact Two-phase Thermosyphon
,”
Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
,
Banff, Canada
, pp.
304
311
.
9.
Webb
,
R. L.
, and
Yamauchi
,
S.
, 2001, “
Thermosyphon Concept to Cool Desktop Computers and Servers
,”
Proceedings of the International Electronic Packaging Technical Conference and Exhibition
,
Kauai, HI
.
10.
Garner
,
S. D.
, and
Patel
,
C. D.
, 2001, “
Loop Thermosyphons and Their Applications to High Density Electronics Cooling
,”
Proceedings of the International Electronic Packaging Technical Conference and Exhibition
Kauai, HI
.
11.
Yuan
,
L.
,
Joshi
,
Y.
, and
Nakayama
,
W.
, 2001, “
Effect of Condenser Location and Tubing Length on the Performance of a Compact Two-Phase Thermosyphon
,”
Proceedings of 2001 International Mechanical Engineering Congress and Exposition
,
ASME
,
New York, NY
, Nov. 11–16.
12.
Haider
,
S. I.
,
Joshi
,
Y. K.
, and
Nakayama
,
W.
, 2002, “
A Natural Circulation Model of the Closed Loop, Two-Phase Thermosyphon for Electronics Cooling
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
881
890
.
13.
Pal
,
A.
,
Joshi
,
Y.
,
Beitelmal
,
M. H.
,
Patel
,
C. D.
, and
Wenger
,
T.
, 2002, “
Design and Performance Evaluation of a Compact Thermosyphon
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
4
), pp.
601
607
.
14.
Van Stralen
,
S. J. D.
, 1956, “
Heat Transfer to Boiling Binary Liquid Mixtures at Atmospheric and Subatmospheric Pressures
,”
Chem. Eng. Sci.
0009-2509,
5
, pp.
290
296
.
15.
Ponter
,
A. B.
, and
Haigh
,
C. P.
, 1969, “
The Boiling Crisis in Saturated and Subcooled Pool Boiling at Reduced Pressures
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
429
437
.
16.
Miyauchi
,
T.
, and
Yokura
,
M.
, 1972, “
The Mechanism of Nucleate Boiling Heat Transfer
,”
Heat Transfer-Jpn. Res.
0096-0802,
1
(
2
), pp.
109
118
.
17.
Van Stralen
,
S. J. D.
,
Cole
,
R.
,
Sluyter
,
W. M.
, and
Sohal
,
M. S.
, 1975, “
Bubble Growth Rates in Nucleate Boiling of Water at Subatmospheric Pressures
,”
Int. J. Heat Mass Transfer
0017-9310,
18
, pp.
655
669
.
18.
Joudi
,
K. A.
, and
James
,
D. D.
, 1977, “
Incipient Boiling Characteristics at Atmospheric and Subatmospheric Pressures
,”
J. Heat Transfer
0022-1481,
99
, pp.
398
403
.
19.
Fath
,
H. S.
, and
Judd
,
R. L.
, 1978, “
Influence of System Pressure on Microlayer Evaporation Heat Transfer
,”
J. Heat Transfer
0022-1481,
100
, pp.
49
55
.
20.
Tewari
,
P. K.
,
Verma
,
R. K.
,
Ramani
,
M. P. S.
,
Chatterjee
,
A.
, and
Mahajan
,
S. P.
, 1989, “
Nucleate Boiling in a Thin Film on a Horizontal Tube at Atmospheric and Subatmospheric Pressures
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
4
), pp.
723
728
.
21.
McGillis
,
W. R.
,
Carey
,
V. P.
,
Fitch
,
J. S.
, and
Hamburgen
,
W. R.
, 1991, “
Pool Boiling Enhancement Techniques for Water at Low Pressure
,”
Proceedings of the Seventh IEEE SEMI-THERM Symposium
, pp.
64
72
.
22.
Launay
,
S.
,
Federov
,
A.
,
Joshi
,
Y.
,
Cao
,
A.
, and
Ajayan
,
P. M.
, 2004, “
Hybrid Micro-Nano Structured Thermal Interfaces for Pool Boiling Heat Transfer Enhancement
,”
Proceedings of THERMINIC 2004
,
Sophia Antipolis
,
Cote d’Azur, France
, Sep. 29–Oct. 1, pp.
299
304
.
23.
Latsch
,
K.
,
Morell
,
F.
, and
Rampf
,
H.
, 1978, “
Subcooled Forced Convection Boiling Heat Transfer at Subatmospheric Pressure
,”
Proceedings of the Sixth International Heat Transfer Conference
, pp.
287
292
.
24.
Gorodov
,
A. K.
,
Kaban’kov
,
O. N.
,
Komov
,
A. T.
, and
Yagov
,
V. V.
, 1979, “
Critical Boiling Heat Fluxes to Liquids at Subatmospheric Pressures
,”
Heat Transfer-Sov. Res.
0440-5749,
11
(
3
),
53
61
.
25.
You
,
S. M.
,
Simon
,
T. W.
, and
Bar-Cohen
,
A.
, 1990, “
Experiments on Boiling Incipience With a Highly-Eetting Dielectric Fluid: Effects of Pressure, Sub-Cooling and Dissolved Gas Content
,”
Proceedings of the International Heat Transfer Conference
,
Hemisphere, New York
, pp.
337
342
.
26.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
, 1980, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, Part I: Experimental Investigation
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
445
450
.
27.
Miller
,
W. J.
,
Gebhart
,
B.
, and
Wright
,
N. T.
, 1990, “
Effects of Boiling History on a Microconfigured Surface in a Dielectric Liquid
,”
Int. Commun. Heat Mass Transfer
0735-1933,
17
, pp.
389
398
.
28.
Oktay
,
S.
, 1982, “
Departure From Natural Convection (DNC) in Low-Temperature Boiling Heat Transfer Encountered in Cooling Micro-Electronic LSI Devices
,”
Proceedings of the 7th Int. Heat Transfer Conference
, Munich, Germany, Vol.
4
, pp.
113
118
.
29.
Bergles
,
A. E.
, and
Chyu
,
M. C.
, 1982, “
Characteristics of Nucleate Pool Boiling From Porous Metallic Coatings
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
279
285
.
30.
Marto
,
P. J.
, and
Lepere
,
V. J.
, 1982, “
Pool Boiling Heat Transfer From Enhanced Surfaces to Dielectric Fluids
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
292
299
.
31.
Nakayama
,
W.
,
Nakajima
,
T.
, and
Hirasawa
,
S.
, 1984, “
Heat Sink Studs Having Enhanced Boiling Surfaces for Cooling of Microelectronic Components
,” ASME Paper No. 84-WA∕HT-89.
32.
Gebhart
,
B.
, and
Wright
,
N.
, 1988, “
Boiling Enhancement of Microconfigured Surfaces
,”
Int. Commun. Heat Mass Transfer
0735-1933,
15
, pp.
141
149
.
33.
Anderson
,
T. M.
, and
Mudawar
,
I.
, 1989, “
Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
752
759
.
34.
Wright
,
N.
, and
Gebhart
,
B.
, 1989, “
Enhanced Boiling on Microconfigured Surfaces
,”
ASME J. Electron. Packag.
1043-7398,
111
, pp.
112
120
.
35.
Mudawar
,
I.
, and
Anderson
,
T. M.
, 1990, “
Parametric Investigation Into the Effects of Pressure, Subcooling, Surface Augmentation and Choice of Coolant on Pool Boiling in the Design of Cooling Systems For High-Power-Density Electronic Chips
,”
ASME J. Electron. Packag.
1043-7398,
112
, pp.
375
382
.
36.
Nowell
,
R. M.
,
Bhavnani
,
S. H.
, and
Jaeger
,
R. C.
, 1995, “
Effect of Channel Width on Pool Boiling From a Microconfigured Heat Sink
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
18
(
3
), pp.
534
539
.
37.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
, 2003, “
Effect of Pressure, Subcooling and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
75
83
.
38.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W. B.
, 2003, “
Effects of Varying Geometrical Parameters on Boiling From Microfabricated Enhanced Structures
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
103
109
.
39.
Abou-Ziyan
,
H. Z.
,
Helali
,
A.
,
Fatouh
,
M.
, and
Abo El-Nasr
,
M. M.
, 2001, “
Performance of Stationary and Vibrated Thermosyphon Working With Water and R134a
,”
Appl. Therm. Eng.
1359-4311,
21
, pp.
813
830
.
40.
Zuo
,
Z. J.
,
North
,
M. T.
, and
Wert
,
K. L.
, 2001, “
High Heat Flux Heat Pipe Mechanism for Cooling of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
(
2
), pp.
220
225
.
41.
Ong
,
K. S.
, and
Haider-E-Alahi
,
Md.
, 2003, “
Performance of a R-134a Filled Thermosyphon
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
2373
2381
.
42.
Park
,
Y. J.
,
Kang
,
H. K.
, and
Kim
,
C. J.
, 2002, “
Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon to the Fill Charge Ratio
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4655
4661
.
43.
Pal
,
A.
, and
Joshi
,
Y.
, 2006, “
Boiling at Sub-Atmospheric Conditions With Enhanced Structures
,”
Proceedings of the Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, ITHERM’06
,
San Diego
, May 30–June 2.
44.
Ramaswamy
,
C.
, 1999, “
A Compact Two-Phase Thermosyphon Employing Microfabricated Boiling Enhancement Structures
,” Ph.D. thesis, University of Maryland, College Park, MD.
You do not currently have access to this content.