In this study, a computational fluid dynamics model has been developed to explain and validate the experimental results originating from the concept of a substrate with an opening. It is found that the openings will interrupt the growth of the boundary layer on substrate surfaces and hence improve the cooling ability of a module without any additional active parts. Furthermore, the concept of openings has not only so far provided at least 12% improvement in heat transfer, but also reduced some difficulties in finding thermal solution, such as the manufacturing cost and the design freedom. More importantly, this study has provided a further step in the direction of demonstrating the opening effect.

1.
Bar-Cohen
,
A.
,
Kraus
,
A. D.
, and
Davidson
,
S. F.
, 1983, “
Thermal Frontiers in the Design and Packaging of Microelectronic Equipment
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
105
(
6
), pp.
53
59
.
2.
Yeh
,
L. T.
, 1995, “
Review of Heat Transfer Technologies in Electronic Equipment
,”
ASME J. Electron. Packag.
1043-7398,
117
, pp.
333
339
.
3.
Sparrow
,
E. M.
,
Yanezmoreno
,
A. A.
, and
Otis
,
D. R.
, 1984, “
Convective Heat Transfer Response to Height Differences in an Array of Block-Like Electronic Components
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
469
473
.
4.
Sparrow
,
E. M.
,
Verumi
,
S. B.
, and
Kadle
,
D. S.
, 1983, “
Enhanced and Local Heat Transfer, Pressure Drop, and Flow Visualization for Arrays of Block-Like Electronic Components
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
689
699
.
5.
Peterson
,
G. P.
, and
Ortega
,
A.
, 1990, “
Thermal Control of Electronic Equipment and Devices
,”
Adv. Heat Transfer
0065-2717,
20
, pp.
181
314
.
6.
Hung
,
T. C.
,
Wang
,
S. K.
, and
Tsai
,
F. P.
, 1997, “
Simulations of Passively Enhanced Conjugate Heat Transfer across an Array of Volumetric Heat Sources
,”
Commun. Numer. Methods Eng.
1069-8299,
13
, pp.
855
866
.
7.
Hung
,
T. C.
, and
Fu
,
C. S.
, 1999, “
Conjugate Heat Transfer Analysis for the Passive Enhancement of Electronic Cooling Through Geometric Modification in a Mixed Convection Domain
,”
Numer. Heat Transfer, Part A
1040-7782,
35
, pp.
519
535
.
8.
Hung
,
T. C.
, 2001, “
A Conceptual Design of Thermal Modeling for Efficiently Cooling an Array of Heated Devices Under Low Reynolds Numbers
,”
Numer. Heat Transfer, Part A
1040-7782,
39
, pp.
361
382
.
9.
Aghazadeh
,
M.
, and
Mallik
,
D.
, 1990, “
Thermal Characteristic of Single and Multilayer High Performance PQFP Packages
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
20
(
2
), pp.
975
979
.
10.
Ridsdle
,
G.
,
Joiner
,
B.
,
Bigler
,
J.
, and
Torres
,
V. M.
, 1994, “
Thermal Performance Limits of the QFP Family
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
17
(
4
), pp.
427
443
.
11.
Edwards
,
D. R.
,
Hwang
,
M.
, and
Stearns
,
B.
, 1995, “
Thermal Enhancement of Plastic IC packages
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
18
(
1
), pp.
57
67
.
12.
Tseng
,
Y. S.
,
Hung
,
T. C.
, and
Pei
,
B. S.
, 2007, “
The Effects of Thermal Radiation for Electronic Cooling on Modified PCB Geometry Under Natural Convection
,”
Numer. Heat Transfer, Part A
1040-7782,
51
, pp.
195
210
.
13.
EIA/JEDEC Standard, 1995, “
Integrated Circuits Thermal Test Method Environment Conditions-Natural Convection (Still Air)
,” Report No. TIS/JESD51-2.
14.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
,
New York
, Chap. 13, pp.
719
and
733
.
15.
Chui
,
E. H.
, and
Raithby
,
G. D.
, 1993, “
Computation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method
,”
Numer. Heat Transfer, Part B
1040-7790,
23
, pp.
269
288
.
16.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patanker
,
S. V.
, 1995, “
Finite Volume Radiative Heat Transfer Procedure for Irregular Geometries
,”
J. Thermophys. Heat Transfer
0887-8722,
9
(
3
), pp.
410
415
.
17.
Kim
,
M. Y.
, and
Baek
,
S. W.
, 1996, “
Numerical Analysis of Conduction, Convection, and Radiation in a Gradually Expanding Channel
,”
Numer. Heat Transfer, Part A
1040-7782,
29
(
7
), pp.
725
740
.
18.
Baek
,
S. W.
, and
Kim
,
M. Y.
, 1998, “
Nonorthogonal Finite-Volume Solutions of Radiative Heat Transfer in a Three-Dimensional Enclosure
,”
Numer. Heat Transfer, Part B
1040-7790,
34
(
4
), pp.
419
437
.
19.
Liu
,
J. S.
,
Shang
,
H. M.
,
Chen
,
Y. S.
, and
Wang
,
T. S.
, 1997, “
Prediction of Radiative Transfer in General Body-Fitted Coordinates
,”
Numer. Heat Transfer, Part B
1040-7790,
31
, pp.
423
439
.
20.
Vandoormaal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
21.
Raithby
,
G. D.
, and
Chui
,
E. H.
, 1990, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
112
, pp.
415
423
.
22.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
A Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,” Paper No. AIAA-98-0860.
23.
Hottel
,
H. C.
, 1930, “
Radiant Heat Transmissions
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
52
, pp.
699
704
.
24.
Goldstein
,
R. J.
,
Sparrow
,
E. M.
, and
Jones
,
D. C.
, 1973, “
Natural Convection Adjacent to Horizontal Plates
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
1025
1034
.
25.
Lloyd
,
J. R.
, and
Moran
,
W. R.
, 1974, “
Natural Convection Adjacent to Horizontal Surface of Various Plan forms
,” ASME Paper No. WA/HT-66.
You do not currently have access to this content.