Abstract

The pressure drop and heat transfer characteristics of a single-phase micropin-fin heat sink were investigated experimentally. Fabricated from 110 copper, the heat sink contained an array of 1950 staggered square micropin fins with 200×200μm2 cross section by 670μm height. The ratios of longitudinal pitch and transverse pitch to pin-fin equivalent diameter are equal to 2. De-ionized water was employed as the cooling liquid. A coolant inlet temperature of 25°C, and two heat flux levels, qeff=50Wcm2 and qeff=100Wcm2, defined relative to the platform area of the heat sink, were tested. The inlet Reynolds number ranged from 93 to 634 for qeff=50Wcm2, and from 127 to 634 for qeff=100Wcm2. The measured pressure drop and temperature distribution were used to evaluate average friction factor and local averaged heat transfer coefficient/Nusselt number. Predictions of the previous friction factor and heat transfer correlations that were developed for low Reynolds number (Re<1000) single-phase flow in short pin-fin arrays were compared to the present micropin-fin data. Moores and Joshi’s friction factor correlation (2003, “Effect of Tip Clearance on the Thermal and Hydrodynamic Performance of a Shrouded Pin Fin Array,” ASME J. Heat Transfer, 125, pp. 999–1006) was the only one that provided acceptable predictions. Predictions from the other friction factor and heat transfer correlations were significantly different from the experimental data collected in this study. These findings point to the need for further fundamental study of single-phase thermal/fluid transport process in micropin-fin arrays for electronic cooling applications.

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
, pp.
126
129
.
2.
Phillips
,
R. J.
, 1990, “
Micro-Channel Heat Sinks
,”
Advances in Thermal Modeling of Electronic Components
,
A.
Bar-Cohen
, and
A. D.
Kraus
eds.,
ASME
,
New York
, Vol.
2
, pp.
109
184
.
3.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
, 1992, “
Heat Sink Optimization with Application to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
, pp.
832
842
.
4.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Cerner
,
F. M.
, 1999, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
149
157
.
5.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
399
415
.
6.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3973
3985
.
7.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2549
2565
.
8.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
, 2004, “
Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink with Single Phase Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4215
4231
.
9.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
, 2005, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1688
1704
.
10.
Peles
,
Y.
,
Kosar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.-J.
, and
Schneider
,
B.
, 2005, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3615
3627
.
11.
Kosar
,
A.
, and
Peles
,
Y.
, 2006, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
121
131
.
12.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Benson
,
J. P.
, 1982, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
700
706
.
13.
Simoneau
,
R. J.
, and
VanFossen
,
G. J.
, Jr.
, 1984, “
Effect of Location in an Array on Heat Transfer to a Short Cylinder in Crossflow
,”
ASME J. Heat Transfer
0022-1481,
106
, pp.
42
48
.
14.
Chyu
,
M. K.
, 1990, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
926
932
.
15.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I.-P.
, and
Natarajan
,
V.
, 1999, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
257
263
.
16.
Hwang
,
J. J.
,
Lai
,
D. Y.
, and
Tsia
,
Y. P.
, 1999, “
Heat Transfer and Pressure Drop in Pin Fin Trapezoidal Ducts
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
264
271
.
17.
Marques
,
C.
, and
Kelly
,
K. W.
, 2004, “
Fabrication and Performance of a Pin Fin Micro Heat Exchanger
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
434
444
.
18.
Short
,
B. E.
, Jr.
,
Raad
,
P. E.
, and
Price
,
D. C.
, 2002, “
Performance of Pin Fin Cast Aluminum Coldwalls, Part 1: Friction Factor Correlation
,”
J. Thermophys. Heat Transfer
0887-8722,
16
, pp.
389
396
.
19.
Short
,
B. E.
, Jr.
,
Raad
,
P. E.
, and
Price
,
D. C.
, 2002, “
Performance of Pin Fin Cast Aluminum Coldwalls, Part 2: Colburn j-Factor Correlations
,”
J. Thermophys. Heat Transfer
0887-8722,
16
, pp.
397
403
.
20.
Moores
,
K. A.
, and
Joshi
,
Y. K.
, 2003, “
Effect of Tip Clearance on the Thermal and Hydrodynamic Performance of a Shrouded Pin Fin Array
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
999
1006
.
21.
Kosar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
, 2005, “
Laminar Flow across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
419
430
.
22.
Kosar
,
A.
,
Kuo
,
C.
, and
Peles
,
Y.
, 2006, “
Hydoroil-Based Micro Pin Fin Heat Sink
,”
Proceeding of IMECE 2006
, Paper No. IMECE2006-13257.
23.
Blevins
,
R. D.
, 1984,
Applied Fluid Dynamics Handbook
,
Van Nostrand Reinhold Company
,
New York
.
24.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
, 1998, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
362
367
.
25.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
.
You do not currently have access to this content.