Warpage during integrated circuit encapsulation process is a serious problem. Previous researchers had focused on warpage analysis with thermal-induced shrinkage and the cure-induced shrinkage was neglected. A new approach considering both cure- and thermal-induced shrinkage during encapsulation process was presented to predict the amount of warpage. The cure-induced shrinkage was described by the pressure-volume-temperature-cure (P-V-T-C) equation of epoxy. The thermal-induced shrinkage was described by the coefficients of thermal expansion of the component materials. The thin small outline package (TSOP) DBS-27P and low-profile quad flat package (LQFP) LQFP-64, which were manufactured by Philips Semiconductor located in Taiwan and Siliconware Precision Industries Corporation, respectively, were chosen to be the simulation models. By comparing the amount of predicted warpage with the experimental results, it showed that the approach could better predict the amount of warpage than that considering only thermal-induced shrinkage. It was also found that the sign of cure-induced warpage could be opposite to the thermal-induced warpage. Appropriate design of a package to make cure- and thermal-induced shrinkage to be of opposite sign could minimize the warpage of a package.

1.
Park
,
J. H.
,
Kim
,
J. K.
,
Yuen
,
M. M. F.
,
Lee
,
S. W. R.
,
Tong
,
P.
, and
Chan
,
P. C. H.
, 1998, “
Thermal Stress Analysis of a PQFP Moulding Processes: Comparison of Viscoelastic and Elastic Models
,”
Key Eng. Mater.
1013-9826,
145
, pp.
1127
1132
.
2.
Kong
,
J. W. Y.
,
Kim
,
J. K.
, and
Yuen
,
M. M. F.
, 2003, “
Warpage in Plastic Packages: Effects of Process Conditions, Geometry and Materials
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
26
, pp.
242
252
.
3.
Van Driel
,
W. D.
,
Zhang
,
G. Q.
,
Janssen
,
L. H. J.
,
Ernst
,
L. J.
,
Su
,
F.
,
Chian
,
K. S.
, and
Yi
,
S.
, 2003, “
Prediction and Verification of Process Induced Warpage of Electronic Packages
,”
Microelectron. Reliab.
0026-2714,
43
, pp.
765
774
.
4.
Kelly
,
G.
,
Lyden
,
C.
,
Lawton
,
W.
, and
Barrett
,
J.
, 1994, “
Accurate Prediction of PQFP Warpage
,”
Electronic Components and Technology Conference
, pp.
102
105
.
5.
Kelly
,
G.
,
Lyden
,
C.
,
Lawton
,
W.
,
Barrett
,
J.
,
Saboui
,
A.
,
Page
,
H.
, and
Peters
,
J. B.
, 1996, “
Importance of Molding Compound Chemical Shrinkage in the Stress an Warpage Analysis of PQFP’s
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
19
, IEEE, Washington, DC, pp.
296
300
.
6.
Oota
,
K.
, and
Saka
,
M.
, 2001, “
Cure shrinkage Analysis of Epoxy Molding Compound
,”
Polym. Eng. Sci.
0032-3888,
41
, pp.
1373
1379
.
7.
Ernst
,
L. J.
,
van’t Hot
,
C.
,
Yang
,
D. G.
,
Kiasat
,
M. S.
,
Zhang
,
G. Q.
,
Bressers
,
H. J. L.
,
Caers
,
J. F. J.
,
den Boer
,
A. W. J.
, and
Janssen
,
J.
, 2002, “
Mechanical Modeling and Characterization of the Curing Process of Underfill Materials
,”
J. Electron. Packag.
1043-7398,
124
, pp.
97
105
.
8.
Yang
,
D. G.
,
Jansen
,
K. M. B.
,
Ernst
,
L. J.
,
Zhang
,
G. Q.
,
van Driel
,
W. D.
,
Bressers
,
H. J. L.
, and
Fan
,
X. J.
, 2004, “
Prediction of Process-Induced Warpage of IC Packages Encapsulated with Thermosetting Polymers
,”
Electronic Components and Technology Conference
,
IEEE
,
Las Vegas, NV
, pp.
747
753
.
9.
Zhang
,
Z.
,
Fan
,
L.
,
Sitaraman
,
S. K.
, and
Wong
,
C. P.
, 2004, “
Four-Laser Bending Beam Measurements and FEM modeling of Underfill Induced Wafer Warpage
,”
Electronic Components and Technology Conference
,
IEEE
,
Las Vegas, NV
, pp.
747
753
.
10.
Jansen
,
K. M. B.
,
Wang
,
L.
,
Yang
,
D. G.
,
van’t Hof
,
C.
,
Ernst
,
L. J.
,
Bressers
,
H. J. L.
, and
Zhang
,
G. Q.
, 2004, “
Constitutive Modeling of Molding Compounds
,”
Electronic Components and Technology Conference
,
IEEE
,
Las Vegas, NV
, pp.
890
894
.
11.
Chang
,
Y. S.
,
Hwang
,
S. J.
,
Lee
,
H. H.
, and
Huang
,
D. Y.
, 2002, “
Study of P-V-T-C Relation of EMC
,”
J. Electron. Packag.
1043-7398,
124
, pp.
371
373
.
12.
Hwang
,
S. J.
, and
Chang
,
Y. S.
, 2005, “
Isobaric Cure Shrinkage Behaviors of Epoxy Molding Compound in Isothermal State
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
43
(
17
), pp.
2392
2398
.
13.
Hwang
,
S. J.
, and
Chang
,
Y. S.
, 2006, “
P-V-T-C Equation for Epoxy Molding Compound
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
29
(
1
), pp.
112
117
.
14.
Suhir
,
E.
, 1992, “
Predicted Residual Bow of Thin Plastic Packages of Integrated Circuit Devices
,”
ASME J. Electron. Packag.
1043-7398,
114
, pp.
467
470
.
15.
Suhir
,
E.
, and
Manzione
,
L. T.
, 1992, “
Predicted Bow of Plastic Packages Due to the Nonuniform Through-Thickness Distribution of Temperature
,”
ASME J. Electron. Packag.
1043-7398,
114
, pp.
329
335
.
16.
Yip
,
L.
, and
Hamzehdoost
,
A.
, 1995, “
Package Warpage Evaluation for High Performance PQFP
,”
IEEE Electronic Components and Technology Conference
,
IEEE
,
Las Vegas, NV
, pp.
229
233
.
17.
Hong
,
L. C.
, and
Hwang
,
S. J.
, 2004, “
Study of Warpage Due to P-V-T-C Relation of EMC in IC Packaging
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331
27
, pp.
291
295
.
18.
Kuo
,
C. C.
, 2004, “
Modeling the Post-Mold Cure Behavior of EMC
,” Master thesis, National Cheng Kung University, Tainan.
19.
Chang
,
R. Y.
,
Yang
,
W. H.
,
Hwang
,
S. J.
, and
Su
,
F.
, 2004, “
Three-Dimensional Modeling of Mold Filling in Microelectronics Encapsulation Process
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331
27
, pp.
200
209
.
20.
Castro
,
J. M.
, and
Macosko
,
C. W.
, 1980, “
Kinetics and Rheology of Typical Polyurethane Reaction Injection Molding Systems
,”
Annu. Tech. Conf.-Soc. Plast. Eng.
0272-5223
26
, pp.
434
438
.
21.
Kamal
,
M. R.
, and
Ryan
,
M. E.
, 1980, “
Kinetics and Rheology of Typical Polyurethane Reaction Injection Molding Systems
,”
Annu. Tech. Conf.-Soc. Plast. Eng.
0272-5223,
26
, pp.
434
438
.
You do not currently have access to this content.