A series of multiaxial ratcheting tests were conducted on 63Sn–37Pb solder. A unified viscoplastic constitutive model was developed on the basis of the Ohno–Wang kinematic hardening model, and the rate dependence of the material was taken into consideration by introducing a viscous term. The stress-strain hysteresis loop of 63Sn–37Pb under different strain rates can be simulated reasonably well by the model. However, since the axial ratcheting strain rate of 63Sn–37Pb solder is strongly dependent on the applied shear strain rates in axial/torsional ratcheting, the original constitutive model fails to describe the effect of shear strain rate on the ratcheting strain. To improve the rate sensitivity of the model, the material parameter μi was correlated to the strain rate. Comparisons of the experimental and simulated results verify that the modified constitutive model is able to predict the complicated deformation of 63Sn–37Pb. The effects of axial stress, shear strain range, loading history, and strain rate on ratcheting behavior can be reflected fairly well.

1.
Basaran
,
C.
, and
Yan
,
C.
, 1998, “
A Thermodynamic Framework for Damage Mechanics of Solder Joints
,”
ASME J. Electron. Packag.
1043-7398,
120
, pp.
379
384
.
2.
Smith
,
J. F.
, and
Kubalak
,
R. R.
, 1979, “
Tin and Tin Alloy
,”
Metals Handbook
,
9th ed.
, American Society for Metals, Metals Park, OH, Vol.
2
, pp.
613
625
.
3.
Vaynman
,
S.
,
Fine
,
M. E.
, and
Jeannotte
,
D. A.
, 1990, “
Low-Cycle Isothermal Fatigue Life of Solder Materials
,”
Solder Mechanics—A State of the Art Assessment
, TMS, PA, pp.
155
189
.
4.
Chen
,
X.
,
Yu
,
D. H.
, and
Kim
,
K. S.
, 2005, “
Experimental Study on Ratcheting Behaviour of Eutectic Tin-Lead Solder Under Multiaxial Loading
,”
Mater. Sci. Eng., A
0921-5093,
406
, pp.
86
94
.
5.
Busso
,
E. P.
,
Kitano
,
M.
, and
Kumazawa
,
T.
, 1992, “
A Visco-Plastic Constitutive Model for 60∕40 Tin-Lead Solder Used in IC Package Joints
,”
ASME J. Eng. Mater. Technol.
0094-4289,
114
, pp.
331
337
.
6.
Darveaux
,
R.
, and
Banerji
,
K.
, 1992, “
Constitutive Relations for Tin-Based Solder Joints
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
, pp.
1013
1024
.
7.
McDowell
,
D. L.
,
Miller
,
M. P.
, and
Brooks
,
D. C.
, 1994, “
A Unified Creep-Plasticity Theory for Solder Alloys
,”
ASTM Spec. Tech. Publ.
0066-0558,
1153
, pp.
42
59
.
8.
Skipor
,
A. F.
,
Harren
,
S. V.
, and
Botsis
,
J.
, 1996, “
On the Constitutive Response of 63/37Sn/Pb Eutectic Solder
,”
ASME J. Eng. Mater. Technol.
0094-4289,
118
, pp.
1
11
..
9.
Fu
,
C.
,
McDowell
,
D. L.
, and
Ume
,
I. C.
, 1998, “
Finite Element Procedure of a Cyclic Thermoviscoplasticity Model for Solder and Copper Interconnects
,”
ASME J. Electron. Packag.
1043-7398,
120
, pp.
24
34
.
10.
Shi
,
X. Q.
,
Pang
,
H. L. J.
,
Zhou
,
W.
, and
Wang
,
Z. P.
, 2000, “
Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy
,”
Int. J. Fatigue
0142-1123,
22
, pp.
217
228
.
11.
Wilde
,
J.
,
Becker
,
K.
,
Thoben
,
M.
,
Blum
,
W.
,
Jupitz
,
T.
,
Wang
,
G. Z.
, and
Cheng
,
Z. N.
, 2000, “
Rate Dependent Constitutive Relations Based on Anand Model for 92.5Pb5Sn2.5Ag Solder
,”
IEEE Trans. Adv. Packag.
1521-3323,
23
, pp.
408
414
.
12.
Neu
,
R. W.
,
Scott
,
D. T.
, and
Woodmansee
,
M. W.
, 2000, “
Measurement and Modeling of Back Stress at Intermediate to High Homologous Temperatures
,”
Int. J. Plast.
0749-6419,
16
, pp.
283
301
.
13.
Neu
,
R. W.
,
Scott
,
D. T.
, and
Woodmansee
,
M. W.
, 2001, “
Thermomechanical Behaviour of 96Sn–4Ag and Castin Alloy
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
238
246
.
14.
Shi
,
X. Q.
,
Pang
,
H. L. J.
,
Zhou
,
W.
, and
Wang
,
Z. P.
, 2000, “
Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy
,”
Int. J. Fatigue
0142-1123,
22
, pp.
217
228
.
15.
Shi
,
X. Q.
,
Wang
,
Z. P.
,
Zhou
,
W.
,
Pang
,
H. L. J.
, and
Yang
,
Q. J.
, 2002, “
A New Creep Constitutive Model for Eutectic Solder Alloy
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
85
90
.
16.
Yi
,
S.
,
Luo
,
G. X.
, and
Chian
,
K. S.
, 2002, “
A Viscoplastic Constitutive Model for 63Sn–37Pb Eutectic Solders
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
91
96
.
17.
Hassan
,
T.
,
Corona
,
E.
, and
Kyriakides
,
S.
, 1992, “
Ratcheting in Cyclic Plasticity, Part II: Multiaxial Behavior
,”
Int. J. Plast.
0749-6419,
8
, pp.
117
146
.
18.
Hassan
,
T.
, and
Kyriakides
,
S.
, 1994, “
Ratcheting in Cyclically Hardening and Softening Materials—Part II: Multiaxial Behavior
,”
Int. J. Plast.
0749-6419,
10
, pp.
185
212
.
19.
Chen
,
X.
, and
Jiao
,
R.
, 2004, “
Modified Kinematic Hardening Rule for Multiaxial Ratcheting Prediction
,”
Int. J. Plast.
0749-6419,
20
, pp.
871
898
.
20.
Chen
,
X.
,
Jiao
,
R.
, and
Kim
,
K. S.
, 2005, “
On the Ohno-Wang Kinematic Hardening Rules for Multiaxial Ratcheting Modeling of Medium Carbon Steel
,”
Int. J. Plast.
0749-6419,
21
, pp.
161
184
.
21.
Yaguchi
,
M.
, and
Takahashi
,
Y.
, 2005, “
Ratchetting of Viscoplastic Material With Cyclic Softening—Part I: Experiments on Modified 9Cr–1Mo Steel
,”
Int. J. Plast.
0749-6419,
21
, pp.
43
65
.
22.
Kang
,
G. Z.
,
Kan
,
Q. H.
,
Zhang
,
J.
, and
Sun
,
Y. F.
, 2006, “
Time-Dependent Ratcheting Experiments of SS304 Stainless Steel
,”
Int. J. Plast.
0749-6419,
22
, pp.
858
894
.
23.
Kang
,
G. Z.
,
Li
,
Y. G.
,
Zhang
,
J.
,
Sun
,
Y. F.
, and
Gao
,
Q.
, 2005, “
Uniaxial Ratcheting and Failure Behaviors of Two Steels
,”
Theor. Appl. Fract. Mech.
0167-8442,
43
, pp.
199
209
.
24.
Sakane
,
M.
,
Nose
,
H.
,
Kitano
,
M.
,
Takahashi
,
H.
,
Mukai
,
M.
, and
Tsukada
,
Y.
, 2001, “
Tensile and Low Cycle Fatigue Standard Testing for Solders—JSMS Recommendation
,”
Proceedings of 4th Japan-China Bilateral Symposium on High Temperature Strength of Materials
, pp.
185
191
.
25.
Chen
,
X.
,
Song
,
J.
, and
Kim
,
K. S.
, 2006, “
Fatigue Life of 63Sn–37Pb Solder Related to Loading Drop Under Uniaxial and Torsional Loading
,”
Int. J. Fatigue
0142-1123,
28
, pp.
767
776
.
26.
Miller
,
K. J.
, and
Chandler
,
D. C.
, 1970, “
High Strain Torsion Fatigue of Solid and Tubular Specimens
,”
Proceedings of the Institution of Mechanical Engineers
,
184
, Part 1, pp.
433
448
.
27.
Abdel-Karim
,
M.
, and
Ohno
,
N.
, 2000, “
Kinematic Hardening Model Suitable for Ratcheting With Steady-State
,”
Int. J. Plast.
0749-6419,
16
, pp.
225
240
.
28.
Abdel-Karim
,
M.
, 2005, “
Numerical Integration Method for Kinematic Hardening Rules With Partial Activation of Dynamic Recovery Term
,”
Int. J. Plast.
0749-6419,
21
, pp.
1303
1321
.
29.
Ohno
,
N.
, 1998, “
Constitutive Modeling of Cyclic Plasticity With Emphasis on Ratcheting
,”
Int. J. Mech. Sci.
0020-7403,
40
, pp.
251
261
.
30.
Chen
,
G.
, and
Chen
,
X.
, 2005, “
Constitutive and Damage Model for 63Sn–37Pb Under Uniaxial and Torsional Loading
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3596
3612
.
31.
Duxbury
,
P.
,
Crook
,
T.
, and
Lyons
,
P.
, 1994, “
A Consistent Formulation for the Integration of Combined Plasticity and Creep
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
1277
1295
.
32.
Hartmann
,
S.
,
Lührs
,
G.
, and
Haupt
,
G.
, 1997, “
An Efficient Stress Algorithm With Applications in Viscoplasticity and Plasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
991
1013
.
33.
Kobayashi
,
M.
, and
Ohno
,
N.
, 2002, “
Implementation of Cyclic Plasticity Models Based on a General Form of Kinematic Hardening
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
2217
2238
.
34.
Chaboche
,
J. L.
, 1989, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
0749-6419,
5
, pp.
247
302
.
35.
Abdel-Karim
,
M.
, 2005, “
On Creep-Ratcheting Interaction: Assessment of Unified Theories
,” in
Proceedings of PLASTICITY05: The 11th International Symposium on Plasticity and its Current Applications
,
Hawaii
, pp.
163
165
.
36.
Abdel-Karim
,
M.
, 2005, “
Assessments of Unified Theories in Simulating Creep-Ratcheting Behaviour of Viscous Materials
,” in
Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology SMiRT18
,
Beijing
, pp.
234
244
.
You do not currently have access to this content.