Abstract

The performance of impingement air cooled plate fin heat sinks differs significantly from that of parallel flow plate fin heat sinks. A simple impingement flow pressure drop model based on developing laminar flow in rectangular channels is proposed. The model is developed from simple momentum balance and utilizes fundamental solutions from fluid dynamics to predict its constitutive components. To test the validity of the model, experimental measurements of pressure drop are performed with heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The accuracy of the pressure drop model was found to be within 20% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The simple model is suitable for impingement air cooled plate fin heat sinks parametric design studies.

1.
Nottage
,
H. B.
, 1945, “
Efficiency of Extended Surface
,”
Trans. ASME
0097-6822,
67
, pp.
621
631
.
2.
Culham
,
J. R.
, and
Muzychka
,
Y. S.
, 2001, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
(
2
), pp.
159
165
.
3.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 1998, “
Modelling Friction Factors in Non-Circular Ducts for Developing Laminar Flow
,”
Proceedings 2nd AIAA Theoretical Fluid Mechanics Meetings
, Albuquerque, NM, Paper No. AIAA 98-2492.
4.
Copeland
,
D.
, 2000, “
Optimization of Parallel Plate Heat Sinks for Forced Convection
,”
Proceedings 16th Semi-Therm Symposium
, San Jose, CA, pp.
266
272
.
5.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
, New York.
6.
Biskeborn
,
R. G.
,
Horvath
,
J. L.
, and
Hultmark
,
E. B.
, 1984, “
Integral Cap Heat Sink Assembly for IBM 4381 Processor
,”
Proceedings International Electronics Packaging Conference
, Baltimore, MD, pp.
468
474
.
7.
Sparrow
,
E. M.
,
Stryker
,
P. C.
, and
Altemani
,
A. C.
, 1985, “
Heat Transfer and Pressure Drop in Flow Passages That Are Open Along Their Lateral Edges
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
4
), pp.
731
740
.
8.
Hilbert
,
C.
,
Sommerfeldt
,
S.
,
Gupta
,
O.
, and
Herrell
,
D. J.
, 1990, “
High Performance Micro-Channel Air Cooling
,”
Proceedings 6th IEEE Semiconductor Thermal and Temperature Measurement Symposium
, Scottsdale, AZ, pp.
108
113
.
9.
Sathe
,
S. B.
,
Sammakia
,
B. G.
,
Wong
,
A. C.
, and
Mahaney
,
H. V.
, 1995, “
A Numerical Study of A High Performance Air Cooled Impingement Heat Sink
,”
Proceedings ASME HTD-Vol. 303, National Heat Transfer Conference
, Portland, OR, Vol.
1
, pp.
43
54
.
10.
Copeland
,
D.
, 1995, “
Manifold Microchannel Heat Sinks: Numerical Analysis
,”
Proceedings ASME HTD. 319/EEP Cooling and Thermal Design of Electronic Systems
, San Francisco, CA, Vol.
15
, pp.
111
116
.
11.
Kang
,
S. S.
, and
Holahan
,
M. F.
, 1995, “
Impingement Heat Sinks for Air Cooled High Power Electronic Modules
,”
Proceedings ASME HTD- National Heat Transfer Conference
, Portland, OR, Vol.
1
, pp.
139
146
.
12.
Holahan
,
M. F.
,
Kang
,
S. S.
, and
Bar-Cohen
,
A.
1996, “
A Flowstream Based Analytical Model for Design of Parallel Plate Heatsinks
,”
Proceedings ASME HTD-Vol. 329, National Heat Transfer Conference
, Houston, TX, Vol.
7
, pp.
63
71
.
13.
Kondo
,
Y.
, and
Matsuhima
,
H.
, 1995, “
Prediction Algorithm of Pressure Drop for Impingement Cooling of Heat Sinks With Longitudinal Fins
,”
Heat Transfer-Jpn. Res.
0096-0802,
24
(
4
), pp.
315
327
.
14.
Sathe
,
S. B.
,
Kelkar
,
K. M.
,
Karki
,
K. C.
,
Tai
,
C.
,
Lami
,
C.
, and
Patankar
,
S. V.
, 1997, “
Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink
,”
J. Electron. Packag.
1043-7398,
119
(
1
), pp.
58
63
.
15.
Biber
,
C. R.
, 1997. “
Pressure Drop and Heat Transfer in an Isothermal Channel With Impinging Flow
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
20
(
4
), pp.
458
462
.
16.
Sasao
,
K.
,
Honma
,
M.
,
Nishihara
,
A.
, and
Atarashi
,
T.
, 1999, “
Numerical Analysis of Impinging Air Flow and Heat Transfer in Plate Fin Type Heat Sinks
,”
Proceedings ASME EEP-Vol. 26-1, Advances in Electronic Packaging
, Maui, HI, Vol.
1
, pp.
493
499
.
17.
Saini
,
M.
, and
Webb
,
R. L.
, 2002, “
Validation of Models for Air Cooled Plane Fin Heat Sinks Used in Computer Cooling
,”
Proceedings 8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, pp.
243
250
.
18.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 2002, “
Laminar Flow Friction and Heat Transfer in Non-Circular Ducts and Channels: Part I-Hydrodynamic Problem
,” Compact Heat Exchangers, A Festschrift on the 60th Birthday of Ramesh K. Shah, Grenoble, France, pp.
123
130
.
19.
Idelchik
,
I. E.
, 1993,
Handbook of Hydraulic Resistance
, 3rd ed.,
CRC
, Boca Raton, FL.
20.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
, 3rd ed.,
McGraw–Hill
, New York.
21.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
22.
Holman
,
J. P.
, 1994,
Experimental Methods for Engineers
, 6th ed.,
McGraw–Hill
, New York.
23.
Duan
,
Z. P.
, 2003, “
Impingement Air Cooled Plate Fin Heat Sinks
,” M.Eng. thesis, Memorial University of Newfoundland, St. John's, Newfoundland.
You do not currently have access to this content.