A multidisciplinary placement optimization methodology for heat generating electronic components on printed circuit boards (PCBs) is presented. The methodology includes thermal, electrical, and placement criteria involving junction temperature, wiring density, line length for high frequency signals, and critical component location which are optimized simultaneously using the genetic algorithm. A board-level thermal performance prediction methodology which is based on a combination of a superposition method and artificial neural networks is developed for this study. Two genetic algorithms with different thermal prediction modules are used in a cascade in the optimization process. The first genetic algorithm uses simplified thermal network modeling and it is mainly aimed at finding component locations that avoid any overlap. Compact thermal models are used in the second genetic algorithm leading to more accurate thermal prediction which improves the placement optimization obtained using the first algorithm. Using this optimization methodology, large calculation time reduction is achieved without losing accuracy. To demonstrate its capabilities, the present methodology is applied to a test case involving placement optimization of several heat generating electronics components on a PCB.

1.
Campbell
,
I. M.
,
Amon
,
H. C.
, and
Cagan
,
J.
, 1997, “
Optimal Three-Dimensional Placement of Heat Generating Electronic Components
,”
ASME J. Electron. Packag.
1043-7398,
119
(
2
), pp.
106
113
.
2.
Queipo
,
N. V.
, and
Gil
,
G. F.
, 2000, “
Multiobjective Optimal Placement of Convectively and Conductively Cooled Electronic Components on Printed Wiring Boards
,”
ASME J. Electron. Packag.
1043-7398,
122
(
2
), pp.
152
159
.
3.
Kaczorowski
,
P. R.
,
Joshi
,
Y.
, and
Azarm
,
S.
, 2003, “
Multi-Objective Design of Liquid Cooled Power Electronic Modules for Transient Operation
,”
Proceedings IEEE SEMI-THERM
, San Jose, CA, March 11–13.
4.
Tsai
,
C.-H.
, and
Kang
,
S.-M.
, 2000, “
Cell-Level Placement for Improving Substrate Thermal Distribution
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
19
, pp.
253
266
.
5.
Scholand
,
A. J.
,
Fulton
,
R. E.
, and
Bras
,
B.
, 1999, “
Investigation of PWB Layout by Genetic Algorithms to Maximize Fatigue Life
,”
ASME J. Electron. Packag.
1043-7398,
121
(
1
), pp.
31
36
.
6.
Beebe
,
C.
,
Carothers
,
J. D.
, and
Ortega
,
A.
, 1999, “
Object-Oriented Thermal Placement Using an Accurate Heat Model
,”
Proceedings HICSS-32
, Maui, HI, January 5–8.
7.
Lee
,
J.
,
Chou
,
J.-H.
, and
Fu
,
S.-L.
, 1995, “
Reliability and Wirability Optimizations for Module Placement on a Convectively Cooled Printed Wiring Board
,”
Integr., VLSI J.
0167-9260,
18
(
2–3
), pp.
173
186
.
8.
Lampaert
,
K.
,
Gielen
,
G.
, and
Sansen
,
W.
, 1997, “
Thermally Constrained Placement of Smart-Power IC’s and Multi-Chip Modules
,”
Proceedings 13th IEEE SEMI-THERM
, Austin, TX, January 28–30.
9.
Lee
,
J.
, 2005, “
Reliability and Wireability Optimizations for Chip Placement on Multichip Modules
,”
IEEE Trans. Electron. Packag. Manuf.
1521-334X,
28
(
2
), pp.
133
141
.
10.
Huang
,
Y.
, and
Fu
,
S.
, 2000, “
Thermal Placement Design for MCM Applications
,”
ASME J. Electron. Packag.
1043-7398,
122
(
2
), pp.
115
120
.
11.
Balachandran
,
M.
, and
Gero
,
J. S.
, 1984, “
A Comparison of Three Methods for Generating the Pareto Optimal Set
,”
Eng. Optimiz.
0305-215X,
7
(
4
), pp.
319
336
.
12.
Schmidt
,
D. C.
, 1994, “
Electronic System Topology and Design
,” Semiconductor Packaging: A Multidisciplinary Approach,
R. J.
Hannemann
,
A. D.
Kraus
, and
M.
Pecht
, eds.,
Wiley
, New York.
13.
Houck
,
C.
,
Joines
,
J.
, and
Kay
,
M.
, 1995, “
A Genetic Algorithm for Function Optimization: A Matlab Implementation
.” North Carolina State University, Raleigh, NC, Technical Rep. No. NCSU-IE TR 95-09.
14.
Hadim
,
H.
, and
Suwa
,
T.
, 2005, “
A Multidisciplinary Design and Optimization Methodology for Ball Grid Array Packages Using Artificial Neural Networks
,”
ASME J. Electron. Packag.
1043-7398,
127
(
3
), pp.
306
313
.
15.
Deshpande
,
A. M.
,
Subbarayan
,
G.
, and
Rose
,
D.
, 2000, “
A System for First Order Reliability Estimation of Solder Joints in Area Array Packages
,”
ASME J. Electron. Packag.
1043-7398,
122
(
1
), pp.
6
12
.
16.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1998, “
Optimization for Thermal and Electrical Wiring for a Flip-Chip Package Using Physical-Neural Network Modeling
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part C
1083-4400,
21
(
2
), pp.
111
117
.
17.
Nabney
,
I.
, 2001,
Netlab: Algorithms for Pattern Recognition
,
Springer
, London.
18.
Shidore
,
S.
,
Adams
,
V.
, and
Lee
,
T.-Y. T.
, 2001, “
A Study of Compact Thermal Model Topologies in CFD for a Flip Chip Plastic Ball Grid Array Package
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
(
2
), pp.
191
198
.
19.
Syswerda
,
G.
, 1991, “
Schedule Optimization Using Genetic Algorithms
,”
Handbook of Genetic Algorithms
,
L.
Davis
, ed.,
Van Nostrand Reinhold
, New York, pp.
332
349
.
20.
Haupt
,
R. L.
, and
Haupt
,
S. E.
, 1998,
Practical Genetic Algorithms
,
Wiley
, New York.
You do not currently have access to this content.