The present paper determines numerically the optimal geometric parameters for the maximal peripheral cooling of a two-dimensional rectangular solid body with internal heat generation. The objective is to maximize the thermal global conductance (i.e., minimize the hot spot temperature on the solid body) by using the minimal cooling space. The flow is conducted around the heated solid body by a sequence of channels of independent width Di, where 1i4. Each configuration is free to morph itself in two directions: (a) the number of cooling channels, and (b) the aspect ratio of the heated body λ. The numerical results show that a number of cooling channels greater than one (i.e., n>1) is profitable in terms of thermal performance when the heated body resembles a square (i.e., λ1). However when λ is free to vary, the thermal performance does not necessarily increase with the number of cooling channels. The paper also discusses the importance to allow each configuration to morph itself in multiple directions by comparing the thermal performance of similar configurations with different number of degrees of freedom. Scale analysis is used to verify the results obtained numerically for all the degrees of freedom considered. The numerical results agree with the scaling trends.

1.
Angirasa
,
D.
, and
Peterson
,
G. P.
, 1999, “
Forced Convection Heat Transfer Augmentation in a Channel With a Localized Heat Source Using Fibrous Materials
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
1
7
.
2.
Culham
,
J. R.
, and
Muzychka
,
Y. S.
, 2001, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
, pp.
159
165
.
3.
Ogiso
,
K.
, 2001, “
Assessment of Overall Cooling Performance in Thermal Design of Electronics Based on Thermodynamics
,”
J. Heat Transfer
0022-1481,
123
, pp.
999
1005
.
4.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
, 2001, “
Design for Manufacturability of SISE Parallel Plate Forced Convection Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
, pp.
150
158
.
5.
Horvat
,
A.
, and
Catton
,
I.
, 2003, “
Numerical Technique for Modeling Conjugate Heat Transfer in an Electronic Device Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2155
2168
.
6.
Krueger
,
W. B.
, and
Bar-Cohen
,
A.
, 2002, “
Optimal Numerical Design of Forced Convection Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
27
, pp.
417
425
.
7.
Gosselin
,
L.
, and
da Silva
,
A. K.
, 2004, “
Combined Heat Transfer and Power Dissipation Optimization of Nanofluid Flows
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
4160
4162
.
8.
da Silva
,
A. K.
, and
Gosselin
,
L.
, 2005, “
Optimal Geometry of L and C-Shaped Channels for Maximum Heat Transfer Rate in Natural Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
609
620
.
9.
Bejan
,
A.
, 1997,
Advanced Engineering Thermodynamics
,
2nd ed.
,
Wiley
, New York, Chap. 13.
10.
Bejan
,
A.
, 2000,
Shape and Structure, from Engineering to Nature
,
Cambridge University Press
, Cambridge.
11.
Bejan
,
A.
, and
Errera
,
M. R.
, 2000, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3105
3118
.
12.
Ordóñez
,
J. C.
, 2003, “
Integrative Energy-Systems Design: System Structure From Thermodynamic Optimization
,” Ph.D. thesis, Duke University.
13.
Bejan
,
A.
, 2004,
Convection Heat Transfer
,
3rd ed.
,
Wiley
, New York.
14.
da Silva
,
A. K.
, and
Bejan
,
A.
, 2005, “
Constructal Multi-Scale Structure for Maximal Heat Transfer Density in Natural Convection
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
34
44
.
15.
Bello-Ochende
,
T.
, and
Bejan
,
A.
, 2004, “
Maximal Heat Transfer Density: Plates With Multiple Lengths in Forced Convection
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
1181
1186
.
16.
Bello-Ochende
,
T.
, and
Bejan
,
A.
, 2005, “
Constructal Multi-Scale Cylinders in Cross-Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1373
1383
.
17.
Gosselin
,
L.
, and
Bejan
,
A.
, 2004, “
Constructal Thermal Optimization of an Electromagnet
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
331
338
.
18.
da Silva
,
A. K.
,
Vasile
,
C.
, and
Bejan
,
A.
, 2004, “
Disc Cooled With High-Conductivity Fins that Extend Inward From the Perimeter
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4257
4263
.
19.
Gosselin
,
L.
, and
Bejan
,
A.
, 2004, “
Constructal Heat Trees at Micro and Nanoscales
,”
J. Appl. Phys.
0021-8979,
96
, pp.
5852
5859
.
20.
Fluid Dynamics International, 1998. FIDAP Theory Manual, Evanston, Illinois.
You do not currently have access to this content.