Heat transfer in turbomachinery has been well established due to the long history of research in the field. A vast amount of research has been devoted to obtain flow fields and regimes, heat transfer modes, surface effects, and heat transfer enhancement techniques. Since most of the flows are in the turbulent regime of air cooling, various heat transfer enhancements such as turbulators, pin fins, concavities, and lattice cooling have been investigated. The electronics industry has shown a rapid increase in the functionality, speed, and the density of transistors, leading to a large increase in the required heat transfer. Most of the flows are in the transitional regime. Heat sinks are the primary choice for thermal management in electronics systems. Enhancements in heat sinks have been limited to taller and tighter fin spacing, while decreasing the weight and the cost. Current state-of-the-art for heat sinks in electronics components is lacking in heat transfer enhancement technologies, which is common in turbine heat transfer practice. Therefore, the primary goal of this paper is to examine the turbomachinery cooling technologies and to inform the packaging engineers about the thermal technologies on the other side of the thermal world.

1.
Moore
,
G. E.
, 1965, “
Cramming Electronics onto Integrated Circuits
,”
Electronics
0013-5070,
38
(
8
).
2.
ITRS Report
, 2003, “
International Technology Roadmap for Semiconductors
,” http://public.itr.nethttp://public.itr.net.
3.
Perfluorinated Fluids Manuals, www.3m.comwww.3m.com, 2004.
4.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
, 2000, “
Design for manufacturability of SISE Parallel Plate Forced Convection Heat Sinks
,”
Proceedings of the Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, pp.
141
148
.
5.
Copeland
,
D. W.
, 2003, “
Fundemental Performance Limits of Heat Sinks
,”
ASME J. Electron. Packag.
1043-7398,
125
, p.
225
.
6.
Pristic
,
S.
, and
Bar-Cohen
,
A.
, 2004, “
Heat-Shield—An Enhancement Device for an Unshoruded Forced Cenvection Heat Sink
,”
2004 Inter Society Conference on Thermal Phenomena
.
7.
Holahan
,
M. F.
, 2004, “
Fins, Fans, and Form: Volumetric Limits to Air-Side Heatsink Performance
,”
2004 Inter Society Conference on Thermal Phenomena
.
8.
Katoh
,
T.
,
Xu
,
G.
,
Vogel
,
M.
, and
Novotny
,
S.
, 2004, “
New Attempt of Forced Air-Cooling for High Flux Applications
,”
Inter Society Conference on Thermal Phenomena
.
9.
De Kock
,
D. J.
, and
Visser
,
J. A.
, 2003, “
Constructing a Trade Off Surface for Extruded Heat Sinks Exposed to Forced Convection
,”
Proceedings of IPACK03 International Electronic Packaging Technical Conference and Exhibition
, InterPack 2003-35151.
10.
Ortega
,
A.
, 2002, “
Air Cooling of Electronics: A Personal Perspective 1981-2001
,”
2002 IEEE Semi-Therm Conference
, San Jose, CA.
11.
You
,
S. M.
, and
Lee
,
S.
, 2004, “
High Power Microelectronics Thermal Management and Packaging Fundamentals
,”
ITHERM 2004
, Las Vegas, NV.
12.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
, 1971, “
Heat Transfer and Friction in Tubes With Repeated-Rib Roughness
,”
Int. J. Heat Mass Transfer
0017-9310,
14
, pp.
601
617
.
13.
Burggraf
,
F.
, 1970, “
Experimental Heat Transfer and Pressure Drop With Two-Dimensional Turbulence Promoter Applied to Two Opposite Walls of a Square Tube
,” in
Augmentation of Convective Heat and Mass Transfer
,
Bergles
and
Webb
, Eds.
ASME
,
New York
, pp.
70
79
.
14.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
, 1978, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
1143
1156
.
15.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
, 1985, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
628
635
.
16.
Taslim
,
M. E.
,
Li
,
T.
, and
Kercher
,
D. M.
, 1996, “
Experimental Heat Transfer and Friction in Channels Roughened With Angled, V-Shaped, and Discrete Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
20
28
.
17.
Bunker
,
R. S.
, and
Osgood
,
S. J.
, 2003, “
The Effect of Turbulator Lean on Heat Transfer and Friction in a Square Channel
,” GT2003-38137, IGTI Turbo Expo, Atlanta.
18.
Rau
,
G.
,
Cakan
,
M.
,
Moeller
,
D.
, and
Arts
,
T.
, 1998, “
The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
368
375
.
19.
Schabacker
,
J.
,
Boelcs
,
A.
, and
Johnson
,
B. V.
, 1998, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180-deg Bend
,” Paper No. 98-GT-544, IGTI Turbo Expo, Stockholm.
20.
Bunker
,
R. S.
,
Wetzel
,
T. G.
, and
Rigby
,
D. L.
, 2002, “
Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade, Part 1: Experimental Measurements
,” GT-2002-30212, IGTI Turbo Expo, Amsterdam.
21.
Taslim
,
M. E.
, and
Spring
,
S. D.
, 1988, “
Experimental Heat Transfer and Friction Factors in Turbulated Cooling Passages of Different Aspect Ratios Where Turbulators are Staggered
,”
AIAA Pap.
0146-3705,
24th Joint Propulsion Conference
, Boston.
22.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2003, “
Heat Transfer and Friction in Channels With Very High Blockage 45-deg Staggered Turbulators
,” GT2003-38611, IGTI Turbo Expo, Atlanta.
23.
Metzger
,
D. E.
,
Fan
,
Z. X.
, and
Shepard
,
W. B.
, 1982, “
Pressure Loss and Heat Transfer Through Multiple Rows of Short Pin Fins
,”
Proceedings of the Seventh International Heat Transfer Conference
, Munich, Germany Vol.
3
.
24.
VanFossen
,
G. J.
, 1982, “
Heat Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
268
274
.
25.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Altemani
,
C. A. C.
, 1980, “
Experiments on In-Line Pin Fin Arrays and Performance Comparisons With Staggered Arrays
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
44
50
.
26.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
, 1982, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
700
706
.
27.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I. P.
, and
Natarajan
,
V.
, 1999, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
257
263
.
28.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
, 1984, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
252
257
.
29.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
, 1998, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
362
367
.
30.
Hwang
,
J. J.
,
Lia
,
D. Y.
, and
Tsia
,
Y. P.
, 1999, “
Heat Transfer and Pressure Drop in Pin-Fin Trapezoidal Ducts
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
264
271
.
31.
Zhang
,
N.
,
Yang
,
W. J.
, and
Lee
,
C. P.
, 1993, “
Heat Transfer and Friction Loss Performance in Flow Networks With Multiple Intersections
,”
Exp. Heat Transfer
0891-6152,
6
, pp.
243
257
.
32.
Bunker
,
R. S
,
Bailey
,
J. C.
,
Lee
,
C. P.
, and
Stevens
,
C. W.
, 2004, “
In-Wall Network (Mesh) Cooling Augmentation for Turbine Airfoils
,” Paper No. GT2004–54260, IGTI Turbo Expo, Vienna, Austria.
33.
Bearman
,
P. W.
, and
Harvey
,
J. K.
, 1976, “
Golf Ball Aerodynamics
,”
Aeronaut. Q.
0001-9259,
May, pp.
112
122
.
34.
Khalatov
,
A. A.
, 2001, “
Vortex Technologies in Aerospace Engineering
,”
Proceedings of the U. S.—Ukrainian Workshop on Innovative Combustion and Aerothermal Technologies in Energy and Power Systems Kiev
, May 20–25.
35.
Afanas’yev
,
V. N.
,
Veselkin
,
Yu. V.
,
Leont’ev
,
A. I.
,
Skibin
,
A. P.
, and
Chudnovskiy
,
Ya. P.
, 1993, “
Thermohydraulics of Flow Over Isolated Depressions (Pits, Grooves) in a Smooth Wall
,”
Heat Transfer-Sov. Res.
0440-5749,
25
(
1
), pp.
22
56
.
36.
Kesarev
,
V. S.
, and
Kozlov
,
A. P.
, 1993, “
Convective Heat Transfer in Turbulized Flow Past a Hemispherical Cavity
,”
Heat Transfer-Sov. Res.
0440-5749,
25
, pp.
156
160
.
37.
Afanas’yev
,
V. N.
, and
Chudnovskiy
,
Ya. P.
, 1992, “
Heat Transfer and Friction on Surfaces Contoured by Spherical Depressions
,”
Heat Transfer-Sov. Res.
0440-5749,
24
, pp.
24
104
.
38.
Afanas’yev
,
V. N.
,
Chudnovskiy
,
Ya. P.
,
Chudnovskiy
,
Ya. P.
,
Leont’ev
,
A. I.
, and
Roganov
,
P. S.
, 1993, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
0894-1777,
7
, pp.
1
8
.
39.
Belen’kiy
,
M. Ya.
,
Gotovskii
,
M. A.
,
Lekakh
,
B. M.
,
Fokin
,
B. S.
, and
Khabenskii
,
V. B.
, 1992, “
Experimental Study of the Thermal and Hydraulic Characteristics of Heat Transfer Surfaces Formed by Spherical Cavities
,”
Teplofiz. Vys. Temp.
0040-3644,
29
(
6
), pp.
1142
1147
.
40.
Belen’kiy
,
M. Ya.
,
Gotovskii
,
M. A.
,
Lekakh
,
B. M.
,
Fokin
,
B. S.
, and
Dolgushin
,
K. S.
, 1993, “
Heat Transfer Augmentation Using Surfaces Formed by a System of Spherical Cavities
,”
Heat Transfer-Sov. Res.
0440-5749,
25
, pp.
196
202
.
41.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
, 1997, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,” IGTI Turbo Expo, Paper No. 97-GT-437, Orlando.
42.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Glezer
,
B.
, 1999, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,” IGTI Turbo Expo, Paper No. 99-GT-163, Indianapolis.
43.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
, 2000, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,” IGTI Turbo Expo, Paper No. 2000-GT-230, Munich.
44.
Nagoga
,
G. P.
, 1996, “
Effective Methods of Cooling of Blades of High Temperature Gas Turbines
,” Publishing House of Moscow Aerospace Institute (Russian language), p.100.
45.
Bunker
,
R. S.
, and
Donnellan
,
K.
, 2003, “
Heat Transfer and Friction Factors for Flows Inside Circular Tubes With Concavity Surfaces
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
665
672
.
46.
Bunker
,
R.
,
Gotovskii
,
M.
,
Belen’kiy
,
M.
, and
Fokin
,
B.
, 2003, “
Heat Transfer and Pressure Loss for Flows Inside Converging and Diverging Channels With Surface Concavity Shape Effects
,”
Proceedings 4th International Conference on Compact Heat Exchangers and Enhancement Technology
, Crete Island, Greece, Sep. 29—Oct. 3,
Begell House Inc
.,
New York
.
47.
Goreloff
,
V.
,
Goychengerg
,
M.
, and
Malkoff
,
V.
, 1990, “
The Investigation of Heat Transfer in Cooled Blades of Gas Turbines
,”
26th Joint Propulsion Conference
,
AIAA J.
0001-1452
48.
Bunker
,
R. S.
, 2004, “
Latticework (Vortex) Cooling Effectiveness Part 1: Stationary Channel Experiments
,” Paper No. GT2004–54157, IGTI Turbo Expo, Vienna, Austria.
49.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
,
Academic Press
,
New York
,
13
, pp.
1
60
.
50.
Han
,
B.
, and
Goldstein
,
R. J.
, 2001, “
Jet Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
147
161
.
51.
Gardon
,
R.
, and
Cobonpue
,
J.
, 1962, “
Heat Transfer Between a Flat Plate and Jets of Air Impinging on it
,”
International Developments in Heat Transfer, Proceedings of the 2nd International Heat Transfer Conference
,
ASME
,
New York
, pp.
454
460
.
52.
Gardon
,
R.
, and
Akfirat
,
J.
, 1966, “
Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets
,”
ASME J. Heat Transfer
0022-1481,
88
, pp.
101
108
.
53.
Perry
,
K. P.
, 1954, “
Heat Transfer by Convection From a Hot Gas Jet to a Plane Surface
,”
Proc. Inst. Mech. Eng.
0020-3483,
168
, pp.
775
784
.
54.
Ichimiya
,
K.
, 1995, “
Heat Transfer and Flow Characteristics of an Oblique Turbulent Impinging Jet Within Confined Walls
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
316
322
.
55.
Metzger
,
D.
,
Yamashita
,
T.
, and
Jenkins
,
C.
, 1971, “
Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets
,”
ASME J. Eng. Power
0022-0825,
91
, pp.
149
158
.
56.
Chupp
,
R.
,
Helms
,
H.
,
McFadden
,
P.
, and
Brown
,
T.
, 1969, “
Evaluation of Internal Heat-Transfer Coefficients for Impingement-Cooled Turbine Airfoils
,”
J. Aircr.
0021-8669,
6
(
3
), pp.
203
208
.
57.
Bunker
,
R.
, and
Metzger
,
D.
, 1990, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
451
458
.
58.
Metzger
,
D.
, and
Korstad
,
R.
, 1972, “
Effects of Crossflow on Impingement Heat Transfer
,”
ASME J. Eng. Power
0022-0825,
94
, pp.
35
41
.
59.
Bailey
,
J. C.
,
Intile
,
J.
,
Tolpadi
,
A.
,
Fric
,
T.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
, 2002, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
994
1002
.
60.
Kercher
,
D.
, and
Tabakoff
,
W.
, 1970, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
73
82
.
61.
Florschuetz
,
L.
,
Truman
,
C.
, and
Metzger
,
D.
, 1981, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement with Crossflow
,”
ASME J. Heat Transfer
0022-1481,
103
, pp.
337
342
.
62.
Florschuetz
,
L.
,
Berry
,
R.
, and
Metzger
,
D.
, 1980, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
132
137
.
63.
Florschuetz
,
L.
,
Metzger
,
D.
, and
Su
,
C.
, 1984, “
Heat Transfer Characteristics for Jet Array Impingement With Initial Crossflow
,”
ASME J. Heat Transfer
0022-1481,
106
, pp.
34
41
.
64.
Andrews
,
G. E.
,
Durance
,
J.
,
Hussain
,
G. I.
, and
Ojobor
,
S. N.
, 1987, “
Full Coverage Impingement Heat Transfer: Influence of the Number of Holes
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
557
563
.
65.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2002, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Both Sparse and Dense Extent
,” GT-2002–30473, IGTI Turbo Expo, Amsterdam.
66.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
, 2001, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
147
153
.
67.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C. P.
, and
Stevens
,
C. W.
, 2004, “
In-Wall Network (Mesh) Cooling Augmentation for Turbine Airfoils
,” Paper No. GT2004–54260, IGTI Turbo Expo, Vienna, Austria.
You do not currently have access to this content.