As CMOS transistor gate lengths are scaled below 45nm, thermal device design is becoming an important part of microprocessor engineering. Decreasing dimensions lead to nanometer-scale hot spots in the drain region of the device, which may increase the drain series and source injection electrical resistances. Such trends are accelerated with the introduction of novel materials and nontraditional transistor geometries, like ultrathin body, surround-gate, or nanowire devices, which impede heat conduction. Thermal analysis is complicated by subcontinuum phenomenan including ballistic electron transport, which reshapes the hot spot region compared with classical diffusion theory predictions. Ballistic phonon transport from the hot spot and between material boundaries impedes conduction cooling. The increased surface to volume ratio of novel transistor designs also leads to a larger contribution from material boundary thermal resistance. In this paper we survey trends in transistor geometries and materials, from bulk silicon to carbon nanotubes, along with their implications for the thermal design of electronic systems.

1.
International Technology Roadmap for Semiconductors (ITRS)
,” http://public.itrs.nethttp://public.itrs.net.
2.
Borkar
,
S.
, 2001, “
Low Power Design Challenges for the Decade
,”
Design Automation Conference
, pp.
293
296
.
3.
Liu
,
C. C.
,
Zhang
,
J.
,
Datta
,
A. K.
, and
Tiwari
,
S.
, 2002, “
Heating Effects of Clock Drivers in bulk, SOI, and 3-D CMOS
,”
IEEE Electron Device Lett.
0741-3106,
23
, pp.
716
718
.
4.
Mahajan
,
R.
,
Nair
,
R.
,
Wakharkar
,
V.
,
Swan
,
J.
,
Tang
,
J.
, and
Vandentop
,
G.
, 2002. “
Emerging Directions For Packaging Technologies
,”
Intel Technol. J.
1535-864X,
6
, pp.
62
75
.
5.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 2001. “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
J. Heat Transfer
0022-1481,
123
, pp.
130
137
.
6.
Pop
,
E.
,
Banerjee
,
K.
,
Sverdrup
,
P. G.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2001, “
Localized Heating Effects and Scaling of sub-0.18 Micron CMOS Devices
,” presented at
the IEEE Intl. Electron Devices Meeting (IEDM)
, Washington, DC, pp.
677
680
.
7.
Lundstrom
,
M.
, 2000,
Fundamentals of Carrier Transport
,
2nd ed.
,
Cambridge Univ. Press
, Cambridge.
8.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Thin Films With Thickness of Order 100nm
,”
Appl. Phys. Lett.
0003-6951,
74
, pp.
3005
3007
.
9.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
J. Heat Transfer
0022-1481,
123
, pp.
749
759
.
10.
Esseni
,
D.
,
Mastrapasqua
,
M.
,
Celler
,
G. K.
,
Fiegna
,
C.
,
Selmi
,
L.
, and
Sangiorgi
,
E.
, 2001, “
Low Field Electron and Hole Mobility of SOI Transistors Fabricated on Ultrathin Silicon Films For Deep Submicrometer Technology Application
,”
IEEE Trans. Electron Devices
0018-9383,
48
, pp.
2842
2850
.
11.
Ferry
,
D. K.
, 2000,
Semiconductor Transport
,
Taylor & Francis
.
12.
Wachutka
,
G. K.
, 1990, “
Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semiconductor Device Modeling
,”
IEEE Trans. Electron Devices
0018-9383,
9
, pp.
1141
1149
.
13.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2004, “
Analytic Band Monte Carlo Model for Electron Transport in Si Including Acoustic and Optical Phonon Dispersion
,”
J. Appl. Phys.
0021-8979,
96
, p.
4998
.
14.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2005, “
Monte Carlo Simulation of Joule Heating in Bulk and Strained Silicon
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
082101
.
15.
Pop
,
E.
,
Rowlette
,
J.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2005, “
Joule Heating Under Quasi-Ballistic Transport Conditions in Bulk and Strained Silicon Devices
,” presented at Intl. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), Tokyo, Japan, pp.
307
310
.
16.
Long
,
D.
, 1960. “
Scattering of Conduction Electrons by Lattice Vibrations in Silicon
,”
Phys. Rev.
0031-899X,
120
, p.
2024
.
17.
Jacoboni
,
C.
, and
Reggiani
,
L.
, 1983, “
The Monte Carlo Method for the Solution of Charge Transport in Semiconductors With Applications to Covalent Materials
,”
Rev. Mod. Phys.
0034-6861,
55
, pp.
645
705
.
18.
Sinha
,
S.
,
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Goodson
,
K. E.
, 2005, “
Scattering of g-Process LO Phonons at Hotspots in Silicon
,”
J. Appl. Phys.
0021-8979,
97
, p.
023702
.
19.
Balandin
,
A.
, and
Wang
,
K. L.
, 1998, “
Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free Standing Semiconductor Quantum Well
,”
Phys. Rev. B
0163-1829,
58
, pp.
1544
1549
.
20.
The NSF/NCN Nanotechnology Simulation Hub
,” http://nanohub.orghttp://nanohub.org.
21.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2003, “
Thermal Analysis of Ultra-Thin Body Device Scaling
,” presented at the IEEE Intl. Electron Devices Meeting (IEDM), Washington, DC, pp.
883
886
.
22.
Liu
,
W.
, and
Asheghi
,
M.
, 2005, “
Thermal Conduction in Ultrathin Pure and Doped Single-Crystal Silicon Layers at High Temperature
,”
J. Appl. Phys.
0021-8979,
98
, p.
123523
.
23.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
2934
2936
.
24.
Yamane
,
T.
,
Nagai
,
N.
,
Katayama
,
S.
, and
Todoki
,
M.
, 2002, “
Measurement of the Thermal Conductivity of Silicon Dioxide Thin Films Using a 3-Omega Method
,”
J. Appl. Phys.
0021-8979,
91
, pp.
9772
9776
.
25.
Chen
,
G.
, 1996, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
J. Heat Transfer
0022-1481,
118
, pp.
539
545
.
26.
Narumanchi
,
S. V.J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Submicron Heat Transport Model in Silicon Accounting For Phonon Dispersion and Polarization
,”
J. Heat Transfer
0022-1481,
126
, pp.
946
955
.
27.
Sinha
,
S.
,
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2006, “
Non-Equilibrium Phonon Distributions in Sub-100nm Silicon Transistors
,”
ASME J. Heat Transfer
, accepted for publication.
28.
Sinha
,
S.
,
Pop
,
E.
, and
Goodson
,
K. E.
, 2004, “
A Split-Flux Model For Phonon Transport Near Hotspots
,” Presented at Intl. Mech. Eng. Congress and Expo (IMECE), Anaheim, CA.
29.
Lundstrom
,
M.
, and
Ren
,
Z.
, 2002, “
Essential Physics of Carrier Transport in Nanoscale MOSFETs
,”
IEEE Trans. Electron Devices
0018-9383,
49
, pp.
133
141
.
30.
Pop
,
E.
,
Chui
,
C. O.
,
Sinha
,
S.
,
Goodson
,
K. E.
, and
Dutton
,
S. W.
, 2004, “
Electro-Thermal Comparison and Performance Optimization of Thin-Body SOI and GOI MOSFETs
,” presented at IEEE Intl. Electron Devices Mtg. (IEDM), San Francisco, CA, pp.
411
414
.
31.
Su
,
L. T.
,
Chung
,
J. E.
,
Goodson
,
K. E.
, and
Flik
,
M. I.
, 1994, “
Measurement and Modeling of Self-Heating in SOI NMOSFETs
,”
IEEE Trans. Electron Devices
0018-9383,
41
, pp.
69
75
.
32.
Pop
,
E.
,
Sinha
,
S.
, and
Goodson
,
K. E.
, 2006, “
Heat Generation and Transport in Nanometer Scale Transistors
,”
Proc. IEEE
, accepted for publication.
33.
Tenbroek
,
B.
,
Lee
,
M. S. L.
,
Redman-White
,
W.
,
Bunyan
,
R. J. T.
, and
Uren
,
M. J.
, 1996, “
Self-Heating Effects in SOI MOSFETs and their Measurement by Small Signal Conductance Techniques
,”
IEEE Trans. Electron Devices
0018-9383,
43
, pp.
2240
2248
.
34.
Jin
,
W.
,
Liu
,
W.
,
Fung
,
S. K. H.
,
Chan
,
P. C. H.
, and
Hu
,
C.
, 2001, “
SOI Thermal Impedance Extraction Methodology and its Significance For Circuit Simulation
,”
IEEE Trans. Electron Devices
0018-9383,
48
, pp.
730
736
.
35.
Jenkins
,
W. A.
, and
Rim
,
K.
, 2002, “
Measurement of the Effect of Self-Heating in Strained-Silicon MOSFETs
,”
IEEE Trans. Electron Devices
0018-9383,
23
, pp.
360
362
.
36.
Polonsky
,
S.
, and
Jenkins
,
K. A.
, 2004, “
Time-Resolved Measurements of Self-Heating in SOI and Strained- Silicon MOSFETs Using Photon Emission Microscopy
,”
IEEE Trans. Electron Devices
0018-9383,
25
, pp.
208
210
.
37.
Chui
,
C. O.
,
Kim
,
H.
,
McIntyre
,
P. C.
, and
Saraswat
,
K. C.
, 2003, “
A Germanium NMOSFET Process Integrating Metal Gate and Improved High-k Dielectric
,” presented at IEEE Intl. Electron Devices Meeting (IEDM), Washington, DC, pp.
437
440
.
38.
Wang
,
D.
,
Wang
,
Q.
,
Javey
,
A.
,
Tu
,
R.
,
Dai
,
H.
,
Kim
,
H.
,
McIntyre
,
P. C.
,
Krishnamohan
,
T.
, and
Saraswat
,
K. C.
, 2003, “
Germanium Nanowire Field-Effect Transistors With SiO2 and High-k HfO2 Gate Dielectrics
,”
Appl. Phys. Lett.
0003-6951,
83
, p.
2432
.
39.
Cui
,
Y.
,
Zhong
,
Z.
,
Wang
,
D.
,
Wang
,
W. U.
, and
Lieber
,
C. M.
, 2003, “
High Performance Silicon Nanowire Field Effect Transistors
,”
Nano Lett.
1530-6984,
3
, pp.
149
152
.
40.
Tilke
,
A.
,
Pescini
,
L.
,
Erbe
,
A.
,
Lorenz
,
H.
, and
Blick
,
R. H.
, 2002, “
Electron-Phonon Interaction in Suspended Highly Doped Silicon Nanowires
,”
Nanotechnology
0957-4484,
13
, p.
491
.
41.
Javey
,
A.
,
Qi
,
P.
,
Wang
,
Q.
, and
Dai
,
H.
, 2004, “
Ten- to 50-nm-Long Quasi-Ballistic Carbon Nanotube Devices Obtained Without Complex Lithography
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
, p.
13408
.
42.
Javey
,
A.
,
Guo
,
J.
,
Wang
,
Q.
,
Lundstrom
,
M.
, and
Dai
,
H.
, 2003, “
Ballistic Carbon Nanotube Field-Effect Transistors
,”
Nature
0028-0836,
424
, pp.
654
657
.
43.
Javey
,
A.
,
Guo
,
J.
,
Paulsson
,
M.
,
Wang
,
Q.
,
Mann
,
D.
,
Lundstrom
,
M.
, and
Dai
,
J. H.
, 2004, “
High-Field Quasiballistic Transport in Short Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
92
, p.
106804
.
44.
Yao
,
Z.
,
Kane
,
C. L.
, and
Dekker
,
C.
, 2000, “
High-Field Electrical Transport in Single-Wall Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
2941
2944
.
45.
Pop
,
E.
,
Mann
,
D.
,
Wang
,
Q.
,
Goodson
,
K. E.
, and
Dai
,
H. J.
, 2006, “
Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature
,”
Nano Lett.
1530-6984,
6
, pp.
96
100
.
46.
Pop
,
E.
,
Mann
,
D.
,
Cao
,
J.
,
Wang
,
Q.
,
Goodson
,
K. E.
, and
Dai
,
H. J.
, 2005, “
Negative Differential Conductance and Hot Phonons in Suspended Nanotube Molecular Wires
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
155505
.
47.
Pop
,
E.
,
Mann
,
D.
,
Reifenberg
,
J.
,
Goodson
,
K. E.
, and
Dai
,
H. J.
, 2005, “
Electro-Thermal Transport in Metallic Single-Wall Carbon Nanotubes For Interconnect Applications
,” Presented at IEEE Intl. Electron Devices Meeting (IEDM), Washington, DC, pp.
253
256
.
48.
Kuroda
,
M. A.
,
Cangellaris
,
A.
, and
Leburton
,
J.-P.
, 2005, “
Nonlinear Transport and Heat Dissipation in Metallic Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
266803
.
You do not currently have access to this content.