This study provides a comprehensive methodology for optimizing the design of a two-phase micro-channel heat sink. The heat sink parameters are grouped into geometrical parameters, operating parameters, and thermal/fluid parameters. The objective of the proposed methodology is to optimize micro-channel dimensions in pursuit of acceptable values for the thermal/fluid parameters corresponding to a given heat flux, coolant, and overall dimensions of the heat generating device to which the heat sink is attached. The proposed optimization methodology yields an acceptable design region encompassing all possible micro-channel dimensions corresponding to a prescribed coolant flow rate or pressure drop. The designer is left with the decision to select optimum channel dimensions that yield acceptable values of important thermal/fluid parameters that are easily predicted by the optimization procedure.

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
, pp.
126
129
.
2.
Kishimito
,
T.
, and
Ohsaki
,
T.
, 1986, “
VLSI Packaging Technique Using Liquid-Cooled Channels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
CHMT-9
, pp.
328
335
.
3.
Rahman
,
M. M.
, and
Gui
,
F.
, 1993, “
Experimental Measurements of Fluid Flow and Heat Transfer in Microchannel Cooling Passages in a Chip Substrate
,”
ASME J. Electron. Packag.
1043-7398,
EEP-4
, pp.
495
506
.
4.
Ravigururajan
,
T. S.
,
Cuta
,
J.
,
McDonald
,
C. E.
, and
Drost
,
M. K.
, 1996, “
Single-Phase Flow Thermal Performance Characteristics of a Parallel Micro-Channel Heat Exchanger
,”
Proceedings of National Heat Transfer Conference
, ASME HTD-329, Vol.
7
, pp.
157
166
.
5.
Kawano
,
K.
,
Minakami
,
K.
,
Iwasaki
,
H.
, and
Ishizuka
,
M.
, 1998, “
Micro Channel Heat Exchanger for Cooling Electrical Equipment
,”
Proceedings of the ASME Heat Transfer Division
, ASME HTD-361–3/PID-3, pp.
173
180
.
6.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Cerner
,
F. M.
, 1999, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
149
157
.
7.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2549
2565
.
8.
Knight
,
R. W.
,
Goodling
,
J. S.
, and
Hall
,
D. J.
, 1991, “
Optimal Thermal Design of Forced Convection Heat Sinks—Analytical
,”
ASME J. Electron. Packag.
1043-7398,
113
, pp.
313
321
.
9.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
, 1992, “
Heat Sink Optimization with Application to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
, pp.
832
842
.
10.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1555
1568
.
11.
Choquette
,
S. F.
,
Faghri
,
M.
,
Charmchi
,
M.
, and
Asako
,
Y.
, 1996, “
Optimum Design of Microchannel Heat Sinks
,”
Micro-Electro-Mechanical Systems (MEMS)—1996
, DSC-Vol.
59
, ASME, pp.
115
126
.
12.
Kennedy
,
J. E.
,
Roach
,
G. M.
, Jr.
,
Dowling
,
M. F.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Jeter
,
S. M.
, and
Quershi
,
Z. H.
, 2000, “
The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
118
125
.
13.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Prediction and Measurement of Incipient Boiling Heat Flux in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3933
3945
.
14.
Zhang
,
L.
,
Koo
,
J. M.
,
Jiang
,
L.
,
Banerjee
,
S. S.
,
Ashegi
,
M.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
, 2000, “
Measurement and Modeling of Two-Phase Flow in Microchannels with Nearly-Constant Heat Flux Boundary Conditions
,”
Micro-Electro-Mechanical Systems (MEMS)—2000
,
A.
Lee
et al.
, eds., ASME, MEMS-Vol.
2
, pp.
129
135
.
15.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2001, “
Forced Convection Boiling in a Microchannel Heat Sink
,”
J. Microelectromech. Syst.
1057-7157,
10
, pp.
80
87
.
16.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
1043-7398,
126
, pp.
213
224
.
17.
Kandlikar
,
S. G.
,
Steinke
,
M. E.
,
Tian
,
S.
, and
Campbell
,
L. A.
, 2001, “
High-Speed Photographic Observation of Flow Boiling of Water in Parallel Mini-Channels
,”
Proceedings of National Heat Transfer Conference
, ASME, pp.
675
684
.
18.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
, 2002, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3275
3286
.
19.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2603
2614
.
20.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2737
2753
.
21.
Warrier
,
G. R.
,
Dhir
,
V. K.
, and
Momoda
,
L. A.
, 2002, “
Heat Transfer and Pressure Drop in Narrow Rectangular Channel
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
53
64
.
22.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
321
332
.
23.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sinks: Part 1—Design Criteria and Heat Diffusion Constraints
,”
ASME J. Electron. Packag.
1043-7398,
116
, pp.
290
297
.
24.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sinks: Part 2—Flow Rate and Pressure Drop Constraints
,”
ASME J. Electron. Packag.
1043-7398,
116
, pp.
298
305
.
25.
Tran
,
T. N.
,
Chyu
,
M. C.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
, 2000, “
Two-Phase Pressure Drop of Refrigerants During Flow Boiling in Small Channels: An Experimental Investigation and Correlation Development
,”
Int. J. Multiphase Flow
0301-9322,
26
, pp.
1739
1754
.
26.
Lee
,
H. J.
, and
Lee
,
S. Y.
, 2001, “
Heat Transfer Correlation for Boiling Flows in Small Rectangular Horizontal Channels With Low Aspect Ratios
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
2043
2062
.
27.
Peng
,
X. F.
, and
Wang
,
B. X.
, 1993, “
Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
3421
3427
.
28.
Ravigururajan
,
T. S.
, 1998, “
Impact of Channel Geometry on Two-Phase Flow Heat Transfer Characteristics of Refrigerants in Microchannel Heat Exchangers
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
485
491
.
29.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks-I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2755
2771
.
30.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks-II. Annular Two-Phase Flow Model
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2773
2784
.
31.
Roach
,
G. M.
, Jr.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Dowling
,
M. F.
, and
Jeter
,
S. M.
, 1999, “
Low-Flow Critical Heat Flux in Heated Microchannels
,”
Nucl. Sci. Eng.
0029-5639,
131
, pp.
411
425
.
32.
Yu
,
W.
,
France
,
D. M.
,
Wambsganss
,
M. W.
, and
Hull
,
J. R.
, 2002, “
Two-Phase Pressure Drop, Boiling Heat Transfer, and Critical Heat Flux to Water in a Small-Diameter Horizontal Tube
,”
Int. J. Multiphase Flow
0301-9322,
28
, pp.
927
941
.
33.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2045
2059
.
34.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
, Suppl. 1,
Academic Press
, New York.
35.
Blevins
,
R. D.
, 1984,
Applied Fluid Dynamics Handbook
,
Van Nostrand Reinhold Company
, New York.
36.
Collier
,
J. G.
, and
Thome
,
J. R.
, 1994,
Convective Boiling and Condensation
,
3rd ed.
,
Oxford University Press
, Oxford.
37.
Zivi
,
S. M.
, 1964, “
Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
0022-1481,
86
, pp.
247
252
.
You do not currently have access to this content.