A two-dimensional model has been developed for the interfacial thermal stresses in short and long trilayer assemblies under both plane stress and plane strain conditions. Interfacial stresses are approximated using a combination of exact elasticity solutions and elementary strength of materials theories. Governing differential equations are linearized through a finite difference discretization procedure. The conditions of zero shear stress at the free edges and self-equilibrated peel stresses are satisfied. The approach is mathematically straightforward, can be extended to include inelastic behavior, and can be adapted to problems involving external loads and a variety of geometries. The results have been compared to available data in the literature and finite element analysis.

1.
Suhir
,
E.
, 2001, “
Analysis of Interfacial Thermal Stresses in a Trimaterial Assembly
,”
J. Appl. Phys.
0021-8979
89
(
7
), pp.
3685
3694
.
2.
Ru
,
C. Q.
, 2002, “
Interfacial Thermal Stresses in Bimaterial Elastic Beams: Modified Beam Models Revisited
,”
ASME J. Electron. Packag.
1043-7398
124
, pp.
141
146
.
3.
Wen
,
Y.
, and
Basaran
,
C.
, 2004, “
An Analytical Model for Thermal Stress Analysis of Multi-Layered Microelectronic Packaging
,”
Mech. Mater.
0167-6636
36
, pp.
369
385
.
4.
Hayashi
,
T.
, 1967, “
Analytical Study of Interlaminar Shear Stresses in a Laminated Composite Plate
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
0549-3811
10
(
17
), pp.
43
48
.
5.
Bogy
,
D. B.
, 1968, “
Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loadings
,”
ASME J. Appl. Mech.
0021-8936
33
, pp.
460
466
.
6.
Zeyfang
,
R.
, 1971, “
Stress and Strains in a Plate Bonded to a Substrate: Semiconductor Devices
,”
Solid-State Electron.
0038-1101
14
, pp.
1035
1039
.
7.
Yin
,
W. L.
, 1992, “
Refined Variational Solutions of the Interfacial Thermal Stresses in a Laminated Beam
,”
ASME J. Electron. Packag.
1043-7398
114
, pp.
193
198
.
8.
Chen
,
D.
,
Cheng
,
S.
, and
Gerhardt
,
T. D.
, 1982, “
Thermal Stresses in Laminated Beams
,”
J. Therm. Stresses
0149-5739
5
, pp.
67
84
.
9.
Yin
,
W. L.
, 1991, “
Thermal Stresses and Free-Edge Effects in Laminated Beams: A Variational Approach Using Stress Functions
,”
ASME J. Electron. Packag.
1043-7398
113
, pp.
68
75
.
10.
Basaran
,
C.
, and
Zhao
,
Y.
2001, “
Mesh Sensitivity and FEA for Multi-Layered Electronic Packaging
,”
ASME J. Electron. Packag.
1043-7398
123
, pp.
218
224
.
11.
Glaser
,
J. C.
, 1990, “
Thermal Stresses in Compliantly Joined Materials
,”
ASME J. Electron. Packag.
1043-7398
112
, pp.
24
29
.
12.
Chen
,
W. T.
, and
Nelson
,
C. W.
, 1979, “
Thermal Stress in Bonded Joints
,”
IBM J. Res. Dev.
0018-8646
23
(
2
), pp.
179
188
.
13.
Williams
,
H. E.
, 1985, “
Asymptotic Analysis of the Thermal Stresses in a Two-Layer Composite With an Adhesive Layer
,”
J. Therm. Stresses
0149-5739
8
, pp.
183
203
.
14.
Suhir
,
E.
, 1986, “
Calculated Thermally Induced Stresses in Adhesively Bonded and Soldered Assemblies
,”
Int. Symp. on Microelectronics Proc.
, Atlanta, Oct.,
Int. Soc. for Hybrid Microelectronics
, Reston, VA, USA, pp.
383
392
.
15.
Suhir
,
E.
, 1988, “
An Approximate Analysis of Stresses in Multilayered Elastic Thin Films
,”
ASME J. Appl. Mech.
0021-8936
55
, pp.
143
148
.
16.
Timoshenko
,
S. P.
, 1925, “
Analysis of Bi-Metal Thermostats
,”
J. Opt. Soc. Am.
0030-3941
11
, pp.
233
255
.
17.
Pao
,
Y. H.
, and
Eisele
,
E.
, 1991, “
Interfacial Shear and Peel Stresses in Multilayered Thin Stacks Subjected to Uniform Thermal Loading
,”
ASME J. Electron. Packag.
1043-7398
113
, pp.
164
172
.
18.
Kerr
,
A. D.
, 1984, “
On the Formal Development of Elastic Foundation Models
,”
Ing.-Arch.
0020-1154
54
, pp.
455
464
.
19.
Compaq Visual FORTRAN 6.6
, 2000,
Compaq Computer Corp.
Houston.
20.
ANSYS 8.0
, 2003,
ANSYS, Inc
, Canonsburg, PA.
21.
Bleich
,
F.
(1923), “
Der Gerade Stab mit Rechteckquerschnitt als Ebenes Problem
,”
Bauingenieur
0005-6650
4
, pp.
255
259
.
You do not currently have access to this content.