This paper reviews the inherent change in the observed mechanical behavior of electronic components, structures, and multimaterials as a result of the ongoing miniaturization. In general, the size of microstructures is no longer negligible with respect to the component size in micro and submicron applications. Additionally, surface layers start to play a more prominent role in the mechanical response. Microstructural effects, macroscopically triggered gradient effects, and surface effects jointly appear and constitute the various size effects that can be observed. Classical continuum mechanics theories fail to describe these phenomena, and higher-order multiscale theories are required to arrive at an appropriate prediction of the mechanical behavior of miniaturized structures.

1.
Ramakrishna
,
G.
,
Pucha
,
R. V.
, and
Sitaraman
,
S. K.
, 2002, “
Micro-Scale Plasticity Effects in Microvia Reliability Analysis
,” in
52nd Electronic Components and Technology Conf.
, San Diego, IEEE-CPMT and EIA, pages
1304
1309
.
2.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
, 1994, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
0956-7151,
42
(
2
), pp.
475
487
.
3.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 1997, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
0065-2156,
33
, pp.
295
361
.
4.
Arzt
,
E.
, 1998, “
Size Effects in Materials Due to Microstructural and Dimensional Constraints: a Comparative Review
,”
Acta Mater.
1359-6454,
46
(
16
), pp.
5611
5626
.
5.
Stölken
,
J. S.
, and
Evans
,
A. G.
, 1998, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
1359-6454,
46
(
14
), pp.
5109
5115
.
6.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
, 1999, “
Mechanism-Based Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1239
1263
.
7.
Elmustafa
,
A. A.
,
Eastman
,
J. A.
,
Rittner
,
M. N.
,
Weertman
,
J. R.
, and
Stone
,
D. S.
, 2000, “
Indentation Size Effect: Large Grained Aluminum Versus Nanocrystalline Aluminum-Zirconium Alloys
,”
Scr. Mater.
1359-6462,
43
(
10
), pp.
951
955
.
8.
Takahiro
,
N.
,
Yoshitada
,
I.
, and
Takeshi
,
T.
, 2000, “
Evaluation of Size Effect on Mechanical Properties of Single Crystal Silicon by Nanoscale Bending Test Using Afm
,”
J. Microelectromech. Syst.
1057-7157,
9
(
4
), pp.
450
459
.
9.
Ding
,
J. N.
,
Meng
,
Y. G.
, and
Wen
,
S. Z.
, 2001, “
Specimen Size Effect on Mechanical Properties of Polysilicon Microcantilever Beams Measured by Deflection Using a Nanoindenter
,”
Mater. Sci. Eng., B
0921-5107,
83
(
1–3
), pp.
42
47
.
10.
Klein
,
M.
,
Hadrboletz
,
A.
,
Weiss
,
B.
, and
Khatibi
,
G.
, 2001, “
The ‘Size Effect’ on the Stress-Strain, Fatigue, and Fracture Properties of Thin Metallic Foils
,”
Mater. Sci. Eng., A
0921-5093,
319–321
, pp.
924
928
.
11.
Andrievski
,
R. A.
, and
Glezer
,
A. M.
, 2001, “
Size Effects in Properties of Nanomaterials
,”
Scr. Mater.
1359-6462,
44
(
8–9
), pp.
1621
1624
.
12.
Gil Sevillano
,
J.
,
Ocaa Arizcorreta
,
I.
, and
Kubin
,
L. P.
, 2001, “
Intrinsic Size Effects in Plasticity by Dislocation Glide
,”
Mater. Sci. Eng., A
0921-5093,
309–310
, pp.
393
405
.
13.
Bažant
,
Z. P.
, and
Guo
,
Z.
, 2002, “
Size Effect and Asymptotic Matching Approximations in Strain-Gradient Theories of Micro-Scale Plasticity
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
5633
5657
.
14.
Benzerga
,
A. A.
,
Hong
,
S. S.
,
Kim
,
K. S.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
, 2001, “
Smaller is Softer: An Inverse Size Effect in a Cast Aluminum Alloy
,”
Acta Mater.
1359-6454,
49
(
15
), pp.
3071
3083
.
15.
Geers
,
M. G. D.
,
Kouznetsova
,
V.
, and
Brekelmans
,
W. A. M.
, 2001, “
Gradient-Enhanced Computational Homogenization for the Micro-Macro Scale Transition
,”
Journal De Physique IV
,
11
(
5
), pp.
145
152
.
16.
Kouznetsova
,
V.
,
Geers
,
M. G. D.
, and
Brekelmans
,
W. A. M.
, 2002, “
Multi-Scale Constitutive Modeling of Heterogeneous Materials With a Gradient-Enhanced Computational Homogenization Scheme
,”
Int. J. Numer. Methods Eng.
0029-5981,
54
, pp.
1235
1260
.
17.
Kouznetsova
,
V. G.
, 2002, “
Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials
,” Ph.D. thesis, Eindhoven University of Technology, Department of Mechanical Engineering, The Netherlands.
18.
Chokshi
,
A. H.
,
Rosen
,
A.
,
Karch
,
J.
, and
Gleiter
,
H.
, 1989, “
On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials
,”
Scr. Metall.
0036-9748,
23
(
10
), pp.
1679
1684
.
19.
Lloyd
,
D. J.
, 1994, “
Particle Reinforced Aluminum and Magnesium Matrix Composites
,”
Int. Mater. Rev.
0950-6608,
39
, pp.
1
23
.
20.
Ma
,
Q.
, and
Clarke
,
D. R.
, 1994, “
Size Dependent Hardness of Silver Single Crystals
,”
J. Mater. Res.
0884-2914,
10
(
4
), pp.
853
863
.
21.
McElhaney
,
K. W.
,
Vlassak
,
J. J.
, and
Nix
,
W. D.
, 1998, “
Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
13
, pp.
1300
1306
.
22.
Shan
,
Z.
, and
Sitaraman
,
S. K.
, 2003, “
Elastic-Plastic Characterization of Thin-Films Using Nanoindentation Technique
,”
Thin Solid Films
0040-6090,
437
, pp.
176
181
.
23.
Nix
,
W. D.
, 1989, “
Mechanical Properties of Thin Films
,”
Metall. Trans. A
0360-2133,
20A
, pp.
2217
2245
.
24.
Aifantis
,
E. C.
, 1984, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
0094-4289,
106
, pp.
326
330
.
25.
Xia
,
Z. C.
, and
Hutchinson
,
J. W.
, 1996, “
Crack Tip Fields in Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
1621
1648
.
26.
Li
,
X.
, and
Cescotto
,
S.
, 1996, “
Finite Element Method for Gradient Plasticity at Large Strains
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
619
633
.
27.
de Borst
,
R.
, and
Pamin
,
J.
, 1996, “
Some Novel Developments in Finite Element Procedures for Gradient-Dependent Plasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
2477
2505
.
28.
Haung
,
Y.
,
Zhang
,
L.
,
Guo
,
T. F.
, and
Hwang
,
K.-C.
, 1997, “
Mixed Mode Near Tip Fields for Cracks in Materials With Strain Gradient Effects
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
439
465
.
29.
Acharya
,
A.
, and
Bassani
,
J. L.
, 2000, “
Incompatibility and Crystal Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
1565
1595
.
30.
Chen
,
S. H.
, and
Wang
,
T. C.
, 2000, “
A New Hardening Law for Strain Gradient Plasticity
,”
Acta Metall.
0001-6160,
48
, pp.
3997
4005
.
31.
Gao
,
H.
, and
Huang
,
Y.
, 2001, “
Taylor-Based Nonlocal Theory of Plasticity
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
2615
2637
.
32.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 2001, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
2245
2271
.
33.
Bassani
,
J. L.
,
Needleman
,
A.
, and
van der Giessen
,
E.
, 2001, “
Plastic Flow in a Composite: A Comparison of Nonlocal Continuum and Discrete Dislocation Predictions
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
833
853
.
34.
Smit
,
R. J. M.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
, 1998, “
Prediction of the Mechanical Behavior of Non-linear Systems by Multi-Level Finite Element Modeling
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
155
, pp.
181
192
.
35.
Miehe
,
C.
,
Schröder
,
J.
, and
Schotte
,
J.
, 1999, “
Computational Homogenization Analysis in Finite Plasticity, Simulation of Texture Development in Polycrystalline Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
171
, pp.
387
418
.
36.
Lee
,
K.
, and
Ghosh
,
S.
, 1999, “
A Microstructure Based Numerical Method for Constitutive Modeling of Composite and Porous Materials
,”
Mater. Sci. Eng.
0025-5416,
272
, pp.
120
133
.
37.
Feyel
,
F.
, and
Chaboche
,
J.-L.
, 2000, “
FE2 Multiscale Approach for Modeling the Elasto-Viscoplastic Behaviour of Long Fibre SiC∕Ti Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
183
, pp.
309
330
.
38.
Kouznetsova
,
V.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
, 2001, “
An Approach to Micro-Macro Modeling of Heterogeneous Materials
,”
Comput. Mech.
0178-7675,
7
(
1
), pp.
37
48
.
39.
Miehe
,
C.
, 2002, “
Strain-Driven Homogenization of Inelastic Microstructures and Composites Based on an Incremental Variational Formulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
1285
1322
.
40.
Shu
,
J. Y.
,
Fleck
,
N. A.
,
van der Giessen
,
E.
, and
Needleman
,
A.
, 2001, “
Boundary Layers in Constrained Plastic Flow: Comparison of Nonlocal and Discrete Dislocation Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1361
1395
.
You do not currently have access to this content.