Numerical predictive accuracy is assessed for board-mounted electronic component heat transfer in free convection, using a computational fluid dynamics code dedicated to the thermal analysis of electronic equipment. This is achieved by comparing numerical predictions with experimental measurements of component junction temperature and component-PCB surface temperature, measured using thermal test chips and infrared thermography, respectively. The printed circuit board (PCB) test vehicle considered is populated with fifteen 160-lead PQFP components generating a high degree of component thermal interaction. Component numerical modeling is based on vendor-specified, nominal package dimensions and material thermophysical properties. To permit both the modeling methodology applied and solver capability to be carefully evaluated, test case complexity is incremented in controlled steps, from individually to simultaneously powered component configurations. Component junction temperature is predicted overall to within ±5°C (7%) of measurement, independently of component location on the board. However, component thermal interaction is found not to be fully captured.

1.
Hutchings
,
B.
, and
Iannuzzeli
,
R.
, 1987, “
Taking the Measure of Fluid Dynamics Software
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501, pp.
72
76
.
2.
Azar
,
K.
, 1999, “
Editorial
,”
Electron. Cooling
,
5
(
3
), pp.
1
.
3.
Azar
,
K.
, 2000, “
The History of Power Dissipation
,”
Electron. Cooling
,
6
(
1
), pp.
42
50
.
4.
Aihara
,
T.
, 1991, “
Air Cooling Techniques by Natural Convection
,”
Cooling Techniques for Computers
,
W.
Aung
, ed.,
Hemisphere Publ.
5.
Lasance
,
C.
, and
Yoshi
,
Y.
, 1999, “
Thermal Analysis of Natural Convection Electronic Systems: Status and Challenges
,” in
Advances in Thermal Modeling of Electronic Components and Systems
,
A.
Bar-Cohen
and
A. D.
Kraus
, eds.,
ASME Press
,
4
, pp.
1
177
.
6.
Eveloy
,
V.
, 2003, “
An Experimental Assessment of Computational Fluid Dynamics Predictive Accuracy for Electronic Component Operational Temperature
,” Ph.D. thesis, Dublin City University, Dublin, Ireland.
7.
Eveloy
,
V.
,
Rodgers
,
P.
, and
Hashmi
,
M. S. J.
, 2004, “
Numerical Prediction of Electronic Component Heat Transfer: A Perspective
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
27
(
2
), pp.
268
282
.
8.
Rosten
,
H.
,
Parry
,
J.
,
Addison
,
J.
,
Viswanath
,
R.
,
Davies
,
M.
, and
Fitzgerald
,
E.
, 1995, “
Development, Validation and Application of a Thermal Model of a PQFP
,”
Proc. of 45th Electronic Components Technology Conf. (ECTC)
, pp.
1140
1151
.
9.
Adams
,
V.
,
Blackburn
,
D.
,
Joshi
,
Y.
, and
Berning
,
D.
, 1997, “
Issues in Validating Package Compact Thermal Models for Natural Convection Cooled Electronics Systems
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
20
(
4
), pp.
420
431
.
10.
Ramakrishna
,
K.
,
Thomas
,
T. R.
,
Tom Lee
,
T.-Y.
,
Trent
,
J. R.
, and
Hause
,
J. V.
, 1998, “
Thermal Performance of an Air-Cooled Plastic Ball Grid Array Package in Natural and Forced Convection
,”
Proc. of Sixth Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM’98)
, pp.
27
34
.
11.
Zahn
,
B. A.
, 1998, “
Evaluating Thermal Characterisation Accuracy Using CFD Codes—A Package Level Benchmark Study of IcePaK and Flotherm
,”
Proc. of Sixth Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM’98)
, pp.
322
329
.
12.
Lohan
,
J.
,
Tiilikka
,
P.
,
Rodgers
,
P.
,
Fager
,
C. M.
, and
Rantala
,
J.
, 2000, “
Experimental and Numerical Investigation into the Influence of Printed Circuit Board Construction on Component Operating Temperature in Natural Convection
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
3
), pp.
578
586
.
13.
Peng
,
G.
, and
Ishizuka
,
M.
, 2002, “
Numerical Analysis of Heat Transfer in a Compact Plastic Ball Grid Array Package Air Cooling Model
,”
Proc. of Eighth Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM’02)
, pp.
29
35
.
14.
Ramakrishna
,
K.
, and
Tom Lee
,
T.-Y.
, 2002, “
Prediction of Thermal Performance of Flip Chip—Plastic Ball Grid Array (FC-PBGA) Packages: Effect of Substrate Physical Design
,”
Proc. of Eighth Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM’02)
, pp.
528
537
.
15.
Eveloy
,
V.
,
Rodgers
,
P.
, and
Lohan
,
J.
, 2002, “
Comparison of Numerical Predictions and Experimental Measurements for the Transient Thermal Behavior of a Board-Mounted Electronic Component
,”
Proc. of Eighth Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM 2002)
, pp.
36
45
.
16.
Kim
,
S. H.
,
Anand
,
N. K.
, and
Fletcher
,
L. S.
, 1991, “
Free Convection Between Series of Vertical Parallel Plates With Embedded Line Heat Sources
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
108
115
.
17.
Di Perna
,
C.
,
Evangelisti
,
A.
,
Paroncini
,
M.
, and
Ricci
,
R.
, 1994, “
Natural Convection in a Rectangular Enclosure With an Array of Chips Mounted on a Vertical Wall
,” in
Thermal Management of Electronic Systems
,
C. J.
Hoogendoorn
,
R. A. W. M.
Henkes
, and
C. J. M.
Lasance
, eds.,
Kluwer Academic
, Dordrecht, pp.
97
106
.
18.
Heindel
,
T. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
, 1995, “
Laminar Natural Convection in a Discretely Heated Cavity: 1–Assessment of Three-Dimensional Effects
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
902
909
.
19.
Heindel
,
T. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
, 1995, “
Laminar Natural Convection in a Discretely Heated Cavity: II—Comparisons of Experimental and Theoretical Results
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
910
917
.
20.
Wang
,
H. Y.
,
Penot
,
F.
, and
Saulnier
,
J. B.
, 1997, “
Numerical Study of a Buoyancy-Induced Flow along a Vertical Plate With Discretely Heated Integrated Circuit Packages
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
7
), pp.
1509
1520
.
21.
Drabbels
,
J. P. A.
, 1997, “
Natural Convection Heat Transfer of Metal Cuboids Flush Mounted in a Horizontal Plate
,” in
Thermal Management of Electronic Systems II
,
E.
Beyne
,
C. J. M.
Lasance
, and
J.
Berghmans
, eds.,
Kluwer Academic
, Dordrecht, pp.
273
280
.
22.
Behnia
,
M.
, and
Nakayama
,
W.
, 1998, “
Numerical Simulation of Combined Natural Convection-Conduction Cooling of Multiple Protruding Chips on a Series of Parallel Substrates
,”
Proc. of Sixth Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM’98)
, pp.
135
142
.
23.
Rodgers
,
P.
, 2000, “
An Experimental Assessment of Numerical Predictive Accuracy for Electronic Component Heat Transfer
,” Ph.D. thesis, University of Limerick, Limerick, Ireland.
24.
Eveloy
,
V.
,
Lohan
,
J.
, and
Rodgers
,
P.
, 2000, “
A Benchmark Study of Computational Fluid Dynamics Predictive Accuracy for Component-Printed Circuit Board Heat Transfer
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
3
), pp.
568
577
.
25.
Lohan
,
J.
, 1995, “
An Investigation Into the Thermal Interaction Between Electronic Components on a Printed Circuit Board
,” Ph.D. thesis, University of Limerick, Limerick, Ireland.
26.
Lohan
,
J.
, and
Davies
,
M.
, 1996, “
Thermal Interaction Between Electronic Components
,”
Proc. of 31st ASME National Heat Transfer Conf.
,
ASME
, New York, HTD-329, Vol.
7
, pp.
73
82
.
27.
SEMI International Standards, 1992, “
G38-87 Test Method—Still- and Forced Air Junction-to-Ambient Thermal Resistance Measurements of Integrated Circuit Packages
,” SEMI International Standards, Packaging Volume, pp.
173
177
.
28.
Järvinen
,
T.
, 1994, “
Emissivity Determination of Some Surfaces With Fourier-Transform Infrared Spectrometer
,”
Laboratory of Applied Thermodynamics
, Helsinki University of Technology, Espoo, Finland.
29.
Flotherm, Version 3.2 Reference and User Manuals
,
Flomerics Limited
, Surrey, UK, 2001.
30.
Graebner
,
J. E.
, and
Azar
,
K.
, 1997, “
Thermal Conductivity Measurements in Printed Wiring Boards
,”
ASME J. Heat Transfer
0022-1481,
119
(
3
), pp.
401
405
.
31.
Jensen
,
R. H.
,
Andrejack
,
G. A.
,
Button
,
D. P.
, and
Bydal
,
B. A.
, 1989, “
Comparative Thermal Performance of Various Substrate Materials in a Simple Packaging Application: Actual versus Predicted
,”
Proc. of 39th Electronic Components Technology Conference (ECTC)
, pp.
572
576
.
32.
Sarvar
,
F.
,
Poole
,
N. J.
, and
Witting
,
P. A.
, 1990, “
PCB Fiber Glass Laminates: Thermal Conductivity Measurements and Their Effect on Simulation
,”
J. Electron. Mater.
0361-5235,
19
, pp.
1345
1350
.
33.
Eckert
,
E. R. G.
, and
Soehngen
,
E.
, 1951, “
Interferometric Studies on the Stability and Transition to Turbulence of a Free Convection Boundary Layer
,”
Proc. Gen. Discuss, Heat Transfer ASME-IME, London
,
ASME
, New York.
34.
Bejan
,
A.
, 1993,
Heat Transfer
,
Wiley
, New York, pp.
335
397
.
35.
Mack
,
B.
, and
Venus
,
T.
, 2000, “
Thermal Challenges in the Telecom and Networks Industry
,”
Electronics Cooling
,
6
(
2
), pp.
44
49
.
36.
Lasance
,
C. J. M.
, 1995, “
The Need for a Change in Thermal Design Philosophy
,”
Electronics Cooling
,
1
(
2
), pp.
24
29
.
37.
Moffat
,
R. J.
, and
Ortega
,
A.
, 1986, “
Buoyancy Induced Forced Convection
,”
Heat Transfer in Electronic Equipment
,
ASME
, New York, HTD-Vol.
57
, pp.
135
144
.
38.
Anderson
,
A. M.
, and
Moffat
,
R. J.
, 1987, “
Buoyancy-Induced Forced Convection on an Isolated Plate, Rough and Smooth
,”
Proc. of 37th Electronic Components Technology Conference (ECTC)
, pp.
539
544
.
39.
Lasance
,
C. J. M.
, 2001, “
The Conceivable Accuracy of Experimental and Numerical Thermal Analyses of Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
3
), pp.
366
382
.
You do not currently have access to this content.