The design and thermal performance of a synthetic-air-jet-based heat sink for high-power dissipation electronics is discussed. Each fin of a plate-fin heat sink is straddled by a pair of two-dimensional synthetic jets, thereby creating a jet ejector system that entrains cool ambient air upstream of the heat sink and discharges it into the channels between the fins. The jets are created by periodic pressure variations induced in a plenum by electromagnetic actuators. The performance of the heat sink is assessed using a thermal test die encased in a heat spreader that is instrumented with a thermocouple. The case-to-ambient thermal resistance under natural convection with the heat sink is 3.15°CW. Forced convection with the synthetic jets enables a power dissipation of 59.2W at a case temperature of 70°C, resulting in a case-to-ambient thermal resistance of 0.76°CW. The synthetic-jet heat sink dissipates 40% more heat compared to steady flow from a ducted fan blowing air through the heat sink. The synthetic jets generate a flow rate of 4.48 CFM through the heat sink, resulting in 27.8 W/CFM and thermal effectiveness of 0.62. The effect of fin length on the thermal resistance of the heat sink is discussed. Detailed measurements on an instrumented heat sink estimate that the average heat transfer coefficients in the channel flow between the fins is 2.5 times that of a steady flow in the ducts at the same Reynolds Number.

1.
International Technology Roadmap for Semiconductors
(
Semiconductor Industry Association
, Palo Alto, 2001).
2.
Bar-Cohen
,
A.
, 2000, “
Computer-Related Thermal Packaging at the Millennial Divide
,”
Electronics Cooling
,
6
, No.
1
, pp.
32
40
.
3.
Smith
,
B. L.
, and
Glezer
,
A.
, 1998, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Plasmas
1070-664X,
10
, No.
9
, pp.
2281
2297
.
4.
Glezer
,
A.
, and
Amitay
,
M.
, 2002, “
Synthetic Jets
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
503
.
5.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
,
Button
,
B. L.
, 1992, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
0142-727X,
13
, pp.
106
115
.
6.
Lehmann
,
G. L.
, and
Kosteva
,
S. J.
, 1990, “
A Study of Forced Convection Direct Air Cooling in the Downstream Vicinity of Heat Sinks
,”
J. Electron. Packag.
1043-7398,
112
, pp.
234
240
.
7.
Maveety
,
J. G.
, and
Hendricks
,
J. F.
, 1999, “
A Heat Sink Performance Study Considering Material, Geometry, Nozzle Placement and Reynolds Number with Air Impingement
,”
J. Electron. Packag.
1043-7398,
121
, pp.
156
161
.
8.
Slayzak
,
S. J.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
, 1994, “
Effects of Interactions Between Adjoining Rows of Circular, Free-Surface Jets on Local Heat Transfer from the Impingement Surface
,”
J. Heat Transfer
0022-1481,
116
, No.
1
, pp.
88
95
.
9.
Morris
,
G. K.
, and
Garimella
,
S. V.
, 1998, “
Orifice and Impingement Flow Fields in Confined Jet Impingement
,”
J. Electron. Packag.
1043-7398,
120
, No.
1
, pp.
68
72
.
10.
Thompson
,
M. R.
,
Denny
,
D. L.
,
Black
,
W. Z.
,
Hartley
,
J. G.
, and
Glezer
,
A.
, 1997, “
Cooling of Microelectronic Devices using Synthetic Jet Technology
,”
11th European Microelectronics Conference
, Venice, Italy, pp.
362
366
.
11.
Russell
,
G. B.
, 1999, “
Local- and System-Level Thermal Management of a Single Level Integrated Module (SLIM) using Synthetic Jets
,” M. S. thesis, Georgia Institute of Technology, Atlanta, GA.
12.
Mahalingam
,
R.
, and
Glezer
,
A.
, 2001, “
An Actively Cooled Heat Sink Integrated with Synthetic Jets
,”
Proceedings of 35th National Heat Transfer Conference
, Anaheim, CA.
13.
Mahalingam
,
R.
, and
Glezer
,
A.
, 2001, “
Synthetic Jet Based Impingement Cooling Module for Electronic Cooling
,”
Proceedings of the IMAPS 2001 Symposium
, Baltimore, MD.
14.
Gosline
,
J. E.
, and
O’Brien
,
M. P.
, 1934, “
The Water Jet Pump
,”
Univ. Calif. Publ. Eng.
0096-9311,
3
, p.
167
.
15.
Winoto
,
S. H.
,
Li
,
H.
, and
Shah
,
D. A.
, 2000, “
Efficiency of Jet Pumps
,”
J. Hydraulic Engineering
,
126
, pp.
150
156
.
16.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, “
Fundamentals of Heat and Mass Transfer
,”
3rd ed.
,
Wiley Publishing
, New York, pp.
496
502
.
You do not currently have access to this content.