Field reliability extrapolations from accelerated tests necessitate simulation of a variety of material behaviors under general loading conditions. The Hierarchical Incremental Single Surface (HiSS) yield function (Desai, C. S., 2001, Mechanics of Materials and Interfaces: The Disturbed State Concept, CRC Press, Boca Raton, FL.) has been applied extensively to a wide range of materials, from solders and silicon to ceramics and geotechnical materials, for simulating continuous-yield elastoplastic and elastoviscoplastic behavior. This work presents a continuous-yield function that avoids problems with HiSS for thermal and tensile loading. Validations are presented for eutectic PbSn data of Wang et al. (Wang, Z., Desai, C.S., and Kundu, T., 2001, “Disturbed State Constitutive Modeling and Testing of Joining Materials in Electronic Packaging,” report to NSF for Materials Processing and Manufacturing Division Grant 9812686, University of Arizona, Tucson, AZ). Limitations on the range of validity of the elastoplastic and the Perzyna elastoviscoplastic formulations are discussed.

1.
Desai
,
C. S.
, 2001,
Mechanics of Materials and Interfaces: The Disturbed State Concept
,
CRC Press
, Boca Raton, FL.
2.
Wang
,
Z.
,
Desai
,
C. S.
, and
Kundu
,
T.
, 2001, “
Disturbed State Constitutive Modeling and Testing of Joining Materials in Electronic Packaging
,” report to NSF for Materials Processing and Manufacturing Division Grant 9812686,
University of Arizona
, Tucson, AZ.
3.
Rafanelli
,
A. J.
, 1992, “
Ramberg-Osgood Parameters for 63-37 Sn-Pb Solder
,”
ASME J. Electron. Packag.
1043-7398,
114
, pp.
234
238
.
4.
Tribula
,
D.
, and
Morris
,
J. W.
, 1990, “
Creep in Shear of Experimental Solder Joints
,”
ASME J. Electron. Packag.
1043-7398,
112
, pp.
88
93
.
5.
Mei
,
Z.
,
Morris
,
J. W.
, and
Shine
,
M. C.
, 1991, “
Superplastic Creep of Eutectic Tin-Lead Solders
,”
ASME J. Electron. Packag.
1043-7398,
113
, pp.
109
113
.
6.
Guo
,
Z.
,
Sprecher
,
A. F.
, and
Conrad
,
H.
, 1992, “
Plastic Deformation Kinetics of Eutectic Pb–Sn Solder Joints in Monotonic Loading and Low Cycle Fatigue
,”
ASME J. Electron. Packag.
1043-7398,
114
, pp.
112
117
.
7.
Hare
,
E. W.
, and
Stang
,
R. G.
, 1995, “
Stress Relaxation Behavior of Eutectic Tin-Lead Solder
,”
J. Electron. Mater.
0361-5235,
24
(
10
), pp
1473
1484
.
8.
Tien
,
J. K.
,
Hendrix
,
B. C.
, and
Attarwala
,
A. J.
, 1991, “
Understanding the Cyclic Mechanical Behavior of Lead/Tin Solder
,”
ASME J. Electron. Packag.
1043-7398,
113
, pp.
115
120
.
9.
Hacke
,
P. L.
,
Sprecher
,
A. F.
, and
Conrad
,
H.
, 1997, “
Microstructure Coarsening During Thermomechanical Fatigue of Pb–Sn Solder Joints
,”
J. Electron. Mater.
0361-5235,
26
(
7
), pp
774
782
.
10.
Hacke
,
P. L.
,
Fahmy
,
Y.
, and
Conrad
,
H.
, 1998, “
Phase Coarsening and Crack Growth Rate During Thermo-Mechanical Cycling of 63Sn37Pb Solder Joints
,”
J. Electron. Mater.
0361-5235,
27
(
8
), pp
941
947
.
11.
Vianco
,
P. T.
,
Burchett
,
S. N.
,
Neilsen
,
M. K.
,
Rejent
,
J. A.
, and
Frear
,
D. R.
, 1999, “
Coarsening of the Sn–Pb Solder Microstructure in Constitutive Model-Based Predictions of Solder Joint Thermal Mechanical Fatigue
,”
J. Electron. Mater.
0361-5235,
28
(
11
), pp.
1290
1298
.
12.
Stone
,
D. S.
, 1990, “
The Creep-Fatigue Interaction in Solders and Solder Joints
,”
ASME J. Electron. Packag.
1043-7398,
112
, pp.
100
103
.
13.
Attarwala
,
A. I.
,
Tien
,
J. K.
,
Masada
,
G. Y.
, and
Dody
G.
, 1992, “
Confirmation of Creep and Fatigue Damage in Pb∕Sn Solder Joints
,”
ASME J. Electron. Packag.
1043-7398,
114
, pp.
109
111
.
14.
Conrad
,
H.
,
Guo
,
Z.
,
Fahmy
,
Y.
, and
Yang
,
D.
, 1999, “
Influence of Microstructure Size on the Plastic Deformation Kinetics, Fatigue Crack Growth Rate, and Low-Cycle Fatigue of Solder Joints
,”
J. Electron. Mater.
0361-5235,
28
(
9
), pp.
1062
1070
.
15.
Choi
,
S.
,
Bieler
,
T. R.
,
Lucas
,
J. P.
, and
Subramaniam
,
K. N.
, 1999, “
Characterization of the Growth of Intermetallic Interfacial Layers of Sn-Ag and Sn-Pb Eutectic Solders and Their Composite Solders on Cu Substrate During Isothermal Long-Term Aging
,”
J. Electron. Mater.
0361-5235,
28
(
11
), pp.
1209
1215
.
16.
Ross
,
R. G.
, 1991, “
A Systems Approach to Solder Joint Fatigue in Spacecraft Electronic Packaging
,”
ASME J. Electron. Packag.
1043-7398,
113
, pp.
121
128
.
17.
Konetzki
,
R. A.
,
Zhang
,
M. X.
,
Sluzewski
,
D. A.
, and
Chang
,
Y. A.
, 1990, “
Oxidation of (Pb,Sn) and (Pb, In) Alloys
,”
J. Electron. Packag.
1043-7398,
112
, pp.
175
178
.
18.
Frear
,
D. R.
,
Sorensen
,
N. R.
, and
Martens
,
J. S.
, 1995, “
Test Methodologies to Perform Valid Accelerated Thermomechanical Fatigue Tests of Solder Joints
,”
Fatigue of Electronic Materials
, ASTM STP 1153,
S. A.
Schroeder
and
M. R.
Mitchell
, Eds.,
ASTM
, Philadelphia, PA, pp.
95
109
.
19.
Dube
,
M.
, 2004, “
Constitutive Modeling of Joining Materials in Electronic Packaging
,” Ph.D. dissertation, University of Arizona, Tucson.
20.
Drexler
,
K. E.
, 1992,
Nanosystems: Molecular Machinery, Manufacturing and Computation
,
Wiley Interscience
, New York.
21.
Pelesko
,
J. A.
, and
Bernstein
,
D. H.
, 2003,
Modeling MEMS and NEMS
,
Chapman and Hall/ CRC
, Boca Raton, FL.
22.
Lyshevski
,
S. E.
, 2002,
MEMS and NEMS: Systems, Devices and Structures
,
CRC Press
, Boca Raton, FL.
23.
Lee
,
W. W.
,
Nguyen
,
L. T.
, and
Selvaduray
,
G. S.
, 2000, “
Solder joint fatigue models: Review and applicability to chip scale packages
,”
Microelectron. Reliab.
0026-2714,
40
, pp.
231
244
.
24.
Desai
,
C. S.
, and
Whitenack
,
R.
, 2001, “
Review of Models and the Disturbed State Concept for Thermomechanical Analysis in Electronic Packaging
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
19
33
.
25.
Andersen
,
I.
,
Guven
,
I.
,
Madenci
,
E.
, and
Gustaffson
,
G.
, 2000, “
The Necessity of Reexamining Previous Life Prediction Analyses of Solder Joints in Electronic Packages
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886
23
(
3
), pp.
516
520
.
26.
Dube
,
M.
, and
Sahay
,
C.
, 1996, “
Uniform Entry Flow at Low Reynolds Numbers
,”
ASME Int. Mech. Eng. Conf. and Exp., Atlanta, GA
.
27.
Dieter
,
G. E.
, 1961,
Mechanical Metallurgy
,
McGraw-Hill
, New York.
28.
Hirsch
,
P. B.
, ed., 1975,
The Physics of Metals 2. Defects
,
Cambridge University Press
, Cambridge, UK.
29.
Gittus
,
J.
, 1975,
Creep, Viscoelasticity and Creep Fracture in Solids
,
Applied Science Publishers
, London.
30.
Cadek
,
J. A.
, 1988,
Creep in Metallic Materials
,
Elsevier
, Amsterdam.
31.
Mura
,
T.
, 1994, “
A Theory of Fatigue-Crack Initiation
,”
Mater. Sci. Eng., A
0921-5093,
176
, pp.
61
70
.
32.
Bonda
N. R.
, and
Noyan
,
I. C.
, 1996, “
Effect of Specimen Size in Predicting the Mechanical Properties of PbSn Solder Alloys
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
19
(
2
), pp.
208
212
.
33.
Sharma
,
P.
,
Ganti
,
S.
,
Dasgupta
,
A.
, and
Loman
,
J.
, 2003, “
Prediction of Rate-Independent Constitutive Behavior of Pb-Free Solders Based on First Principles
,”
IEEE Trans. Compon. Packag. Manuf. Tech.
26
(
3
), pp.
659
666
.
34.
Wen
,
S.
, and
Keer
,
L. M.
, 2002, “
A Theory of Fatigue: A Physical Approach with Application to Lead-Rich Solder
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
1
10
.
35.
Wong
B.
, and
Helling
,
D. E.
, 1990, “
A Mechanistic Model for Solder Joint Failure Prediction under Thermal Cycling
,”
ASME J. Electron. Packag.
1043-7398,
112
, pp.
104
109
.
36.
Zubelewicz
,
A.
,
Berriche
,
R.
,
Keer
,
L. M.
, and
Fine
,
M. E.
, 1989, “
Lifetime Prediction of Solder Materials
,”
ASME J. Electron. Packag.
1043-7398,
111
, pp.
179
182
.
37.
Sharma
,
P.
, and
Dasgupta
,
A.
, 2002, “
Micro-Mechanics of Creep-Fatigue Damage in Pb–Sn Solder Due to Thermomechanical Cycling-Part II: Mechanistic Insights and Cyclic Durability Predictions from Monotonic Data
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
298
304
.
38.
Tribula
,
D.
,
Grivas
,
D.
,
Frear
,
D. R.
, and
Morris
,
J. W.
, 1989, “
Observations on the Mechanisms of Fatigue in Eutectic Pb-Sn Solder Joints
,”
ASME J. Electron. Packag.
1043-7398,
111
, pp.
83
89
.
39.
Igoshev
,
V. I.
, and
Kleiman
,
J. I.
, 2000, “
Creep Phenomena in Lead-Free Solders
,”
J. Electron. Mater.
0361-5235,
29
(
2
), pp
244
250
.
40.
Qian
,
Z.
,
Ren
,
W.
, and
Liu
,
S.
, 1999, “
A Damage Coupling Framework of Unified Viscoplasticity for the Fatigue of Solder Alloys
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
162
168
.
41.
Ju
,
S. H.
,
Sandor
,
B. I.
, and
Plesha
,
M. E.
, 1996, “
Life Prediction of Solder Joints by Damage and Fracture Mechanics
,”
ASME J. Electron. Packag.
1043-7398,
118
, pp.
193
200
.
42.
Zhang
,
X.
,
Lee
,
S.-W. R.
, and
Pao
,
Y.-H.
, 2000, “
A Damage Evolution Model for Thermal Fatigue Analysis of Solder Joints
,”
ASME J. Electron. Packag.
1043-7398,
122
, pp.
200
206
.
43.
Gurson
,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth
,”
J. Eng. Mat. Tech.
, Paper No. 76-Mat-CC.
44.
Needleman
,
A.
, and
Tvergaard
,
V.
, 1984, “
An Analysis of Ductile Rupture in Notched Bars
,”
J. Mech. Phys. Solids
0022-5096,
32
(
6
), pp.
461
490
.
45.
Li
,
H.
, 2003, “
FEM Analysis with DSC Modeling for Materials in Chip-Substrate Systems
,” Ph.D. dissertation, University of Arizona, Tucson, AZ.
46.
Dishongh
,
T. J.
, and
Desai
,
C. S.
, 1999, “
Calibration of the disturbed state model for thermo-mechanical behavior of various solders
,”
InterPACK ’99: Pacific RIM/ASME International Intersociety Electronics Photonic Packaging Conference ’Advances in Electronic Packaging 1999
,
ASME EEP
26-1
, Maui, HI, pp
433
-
439
.
47.
Desai
,
C. S.
,
Basaran
,
C.
,
Dishongh
,
T. J.
, and
Prince
,
J. L.
, 1998, “
Thermomechanical analysis in electronic packaging with unified constitutive model for materials and joints
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
1070-9894,
21
(
1
), pp.
87
97
.
48.
Desai
,
C. S.
,
Chia
,
J.
,
Kundu
,
T.
, and
Prince
,
J. L.
, 1997, “
Thermomechanical response of materials and interfaces in electronic packaging: Part I-unified constitutive model and calibration
,”
ASME J. Electron. Packag.
1043-7398,
119
(
4
), pp.
294
300
.
49.
Shi
,
X. Q.
,
Zhou
.
W.
,
Pang
,
H. L.J.
, and
Wang
,
Z. P.
, 1999, “
Effect of Temperature and Strain Rate on the Mechanical Properties of 63Sn∕37Pb Solder Alloy
,”
ASME J. Electron. Packag.
1043-7398,
21
, pp
179
185
.
50.
Chia
,
J. H.
, 1994, “
Constitutive Modeling of Thermomechanical Response of Materials in Semiconductor Devices with Emphasis on Interface Behavior
,” Ph.D. Dissertation, University of Arizona, Tucson, AZ.
51.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
, 1989,
Concepts and Applications of Finite Element Analysis
,
Wiley
.
52.
Knecht
,
S.
, and
Fox
,
L.
, 1991,
Solder Joint Reliability: Theory in Application
,
J. H.
Lau
, ed.,
Van Nostrand-Reinhold
, New York, Chap. 16.
53.
Perzyna
,
P.
, “
Fundamental Problems in Viscoplasticity
,” 1996,
Adv. Appl. Mech.
0065-2156,
9
, pp.
243
377
.
54.
Stephens
,
J. J.
, and
Frear
D. R.
, 1999, “
Time-dependent deformation behavior of near-eutectic 60Sn-40Pb solder
,”
Metall. Mater. Trans. A
1073-5623,
30
(
5
), pp.
1301
1313
,
55.
Whitenack
,
R.
, (2002) private communication.
56.
Li
,
H.
, (2002), private communication
57.
Desai
,
C. S.
,
Wang
Z.
, and
Dube
,
M.
, 2001, “
New Thermomechanical Device and Testing Towards Modeling Behavior of Joining Materials
,”
Proc. IPAC’01 The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition, Kauai, HI
.
58.
Pan
,
T.-Y.
, 1991, “
Thermal Cycling Induced Plastic Deformation in Solder Joints-Part I: Accumulated Deformation in Surface Mount Joints
,”
ASME J. Electron. Packag.
1043-7398,
113
, pp.
8
15
.
You do not currently have access to this content.