The gold-gold thermocompression process for power heterostructure bipolar transistor (HBT) flip chip has been modelled and simulated by finite element method. A model for plated gold creep has been determined on the basis of empirical data and model comparison. This model seems suited for gold-gold thermocompression process optimization.

1.
Blanck, H., Delage, S. I., Cassette, S., Floriot, D., Chartier, E., diForte-Poisson, M. A., Watrin, E., and Bourne, P., 1996, “High Efficiency InGaP/GaAs HBT Power Amplifiers,” EDMO’96, Leeds, UK, 25–26 Nov., pp. 115–119.
2.
Bahl
,
S. R.
,
Camnitz
,
L. H.
,
Houng
,
D.
, and
Mierzwinski
,
M.
,
1996
, “
Reliability Investigation in InGaP/GaAs Heterojunction Bipolar Transistors
,”
IEEE Electron Device Lett.
,
17
, pp.
446
448
.
3.
Bayraktaroglu
,
B.
,
Barrette
,
J.
,
Kehias
,
L.,
,
Huang
,
C. I.
,
Fitch
,
R.
,
Nidhard
,
R.
, and
Scherer
,
R.
,
1993
, “
Very High-Power Density CW Operation of GaAs/AlGaAs Microwave Heterojunction Bipolar Transistors
,”
IEEE Electron Device Lett.
,
14
, pp.
493
495
.
4.
Hill
,
D.
,
Yarborough
,
R.
,
Kim
,
T.
, and
Chau
,
H. F.
,
1997
, “
Low Thermal Impedance MMIC Technology
,”
IEEE Microw. Guid. Wave Lett.
,
7
, pp.
36
38
.
5.
Hill
,
D.
,
Khatibzadeh
,
A.
,
Liu
,
W.
,
Kim
,
T.
, and
Ikalainen
,
P.
,
1995
, “
Novel HBT with Reduced Thermal Impedance
,”
IEEE Microw. Guid. Wave Lett.
,
5
, pp.
373
375
.
6.
Sato, H., Miyauchi, M., Sakuno, K., Akagi, M., Hasegawa, M., Twynam, J. K., Yamamura, K., and Tomita, T., 1993, “Bump Heat Sink Technology: A Novel Assembly Technology Suitable for Power HBTs,” IEEE GaAs IC Symp., pp. 337–340.
7.
Ahmed
,
N.
, and
Svitak
,
J. J.
,
1975
, “
Characterization of Gold-Gold Thermocompression Bonding
,”
Solid State Technol.
, Nov.,
PP.
25
32
.
8.
McGuire
,
G. E.
,
Jones
,
J. V.
, and
Dowell
,
H. J.
,
1977
, “
The Auger Analysis of Contaminants that Influence the Thermocompression Bonding of Gold
,”
Thin Solid Films
,
45
, pp.
59
68
.
9.
Condra
,
L. W.
,
Svitak
,
J. J.
, and
Pense
,
A. W.
,
1975
, “
The High Temperature Deformation Properties of Gold and Thermocompression Bonding
,”
IEEE Trans. Parts, Hybrids and Packaging
,
PHP-11
, pp.
290
296
.
10.
Davies
,
P. W.
,
Denisson
,
J. P.
, and
Evans
,
R. W.
,
1964
, “
The High-Temperature Creep and Fracture of Polycrystalline Gold
,”
J. Inst. Met.
,
92
, pp.
409
412
.
11.
Takahashi
,
Y.
,
Inoue
,
M.
, and
Inoue
,
K.
,
1999
, “
Numerical Analysis of Fine Lead Bonding Effect of Pad Thickness on Interfacial Deformation
,”
IEEE Trans. on Comp. Pack. Technol.
,
22
, pp.
291
298
.
12.
Thouless
,
M. D.
,
Gupta
,
J.
, and
Harper
,
J. M. E.
,
1993
, “
Stress Development and Relaxation in Copper Films During Thermal Cycling
,”
J. Mater. Res.
,
8
, pp.
1845
1852
.
13.
Frost, H. J., and Ashby, M. F., 1982, Deformation-Mechanisms Maps, Pergamon Press, Oxford.
14.
Hodge
,
T. C.
,
Bidstrup-Allen
,
S. A.
, and
Kohl
,
P. A.
,
1997
, “
Stresses in Thin Film Metallizations
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
20
, pp.
241
250
.
15.
Lin
,
J.
,
Dunne
,
F. P. E.
, and
Hayhurst
,
D. R.
,
1996
, “
Physically Based Temperature Dependence of Elastic-Viscoplastic Constitutive Equations for Copper Between 20 and 500°C
,”
Philos. Mag. A
,
74
, pp.
359
382
.
You do not currently have access to this content.