The gold-gold thermocompression process for power heterostructure bipolar transistor (HBT) flip chip has been modelled and simulated by finite element method. A model for plated gold creep has been determined on the basis of empirical data and model comparison. This model seems suited for gold-gold thermocompression process optimization.
Issue Section:
Technical Papers
1.
Blanck, H., Delage, S. I., Cassette, S., Floriot, D., Chartier, E., diForte-Poisson, M. A., Watrin, E., and Bourne, P., 1996, “High Efficiency InGaP/GaAs HBT Power Amplifiers,” EDMO’96, Leeds, UK, 25–26 Nov., pp. 115–119.
2.
Bahl
, S. R.
, Camnitz
, L. H.
, Houng
, D.
, and Mierzwinski
, M.
, 1996
, “Reliability Investigation in InGaP/GaAs Heterojunction Bipolar Transistors
,” IEEE Electron Device Lett.
, 17
, pp. 446
–448
.3.
Bayraktaroglu
, B.
, Barrette
, J.
, Kehias
, L.,
, Huang
, C. I.
, Fitch
, R.
, Nidhard
, R.
, and Scherer
, R.
, 1993
, “Very High-Power Density CW Operation of GaAs/AlGaAs Microwave Heterojunction Bipolar Transistors
,” IEEE Electron Device Lett.
, 14
, pp. 493
–495
.4.
Hill
, D.
, Yarborough
, R.
, Kim
, T.
, and Chau
, H. F.
, 1997
, “Low Thermal Impedance MMIC Technology
,” IEEE Microw. Guid. Wave Lett.
, 7
, pp. 36
–38
.5.
Hill
, D.
, Khatibzadeh
, A.
, Liu
, W.
, Kim
, T.
, and Ikalainen
, P.
, 1995
, “Novel HBT with Reduced Thermal Impedance
,” IEEE Microw. Guid. Wave Lett.
, 5
, pp. 373
–375
.6.
Sato, H., Miyauchi, M., Sakuno, K., Akagi, M., Hasegawa, M., Twynam, J. K., Yamamura, K., and Tomita, T., 1993, “Bump Heat Sink Technology: A Novel Assembly Technology Suitable for Power HBTs,” IEEE GaAs IC Symp., pp. 337–340.
7.
Ahmed
, N.
, and Svitak
, J. J.
, 1975
, “Characterization of Gold-Gold Thermocompression Bonding
,” Solid State Technol.
, Nov., PP.
25
–32
.8.
McGuire
, G. E.
, Jones
, J. V.
, and Dowell
, H. J.
, 1977
, “The Auger Analysis of Contaminants that Influence the Thermocompression Bonding of Gold
,” Thin Solid Films
, 45
, pp. 59
–68
.9.
Condra
, L. W.
, Svitak
, J. J.
, and Pense
, A. W.
, 1975
, “The High Temperature Deformation Properties of Gold and Thermocompression Bonding
,” IEEE Trans. Parts, Hybrids and Packaging
, PHP-11
, pp. 290
–296
.10.
Davies
, P. W.
, Denisson
, J. P.
, and Evans
, R. W.
, 1964
, “The High-Temperature Creep and Fracture of Polycrystalline Gold
,” J. Inst. Met.
, 92
, pp. 409
–412
.11.
Takahashi
, Y.
, Inoue
, M.
, and Inoue
, K.
, 1999
, “Numerical Analysis of Fine Lead Bonding Effect of Pad Thickness on Interfacial Deformation
,” IEEE Trans. on Comp. Pack. Technol.
, 22
, pp. 291
–298
.12.
Thouless
, M. D.
, Gupta
, J.
, and Harper
, J. M. E.
, 1993
, “Stress Development and Relaxation in Copper Films During Thermal Cycling
,” J. Mater. Res.
, 8
, pp. 1845
–1852
.13.
Frost, H. J., and Ashby, M. F., 1982, Deformation-Mechanisms Maps, Pergamon Press, Oxford.
14.
Hodge
, T. C.
, Bidstrup-Allen
, S. A.
, and Kohl
, P. A.
, 1997
, “Stresses in Thin Film Metallizations
,” IEEE Trans. Compon., Packag. Manuf. Technol., Part A
, 20
, pp. 241
–250
.15.
Lin
, J.
, Dunne
, F. P. E.
, and Hayhurst
, D. R.
, 1996
, “Physically Based Temperature Dependence of Elastic-Viscoplastic Constitutive Equations for Copper Between 20 and 500°C
,” Philos. Mag. A
, 74
, pp. 359
–382
.Copyright © 2003
by ASME
You do not currently have access to this content.