In this study, numerical investigations are performed to examine the influence of unsteady submerged dielectric liquid (HFE-8401HT) jets impinging on electronic chip surfaces. The problem considered here involves conjugate heat transfer. Two different jet inlet velocity waveforms are studied—step and sinusoidal—over the range of frequencies 0.03–4.0 Hz, with the Reynolds number, based on jet inlet width, of up to 100. Results for chip surface temperatures and average Nusselt numbers are presented for both velocity waveforms over the range of frequencies considered, and the trends are discussed. A lumped-capacitance analysis for the chip is presented in terms of nondimensional parameters. The chip temperatures obtained from the analysis are compared to results obtained numerically.

1.
Stevens, J., and Webb, B. W., 1989, “Local Heat Transfer Coefficients Under an Axisymmetric, Single-phase Liquid Jet,” ASME HTD-Vol. 111, Heat Transfer in Electronics, pp. 113–119.
2.
Womac, D. J., Aharoni, G., Ramadhyani, S., and Incropera, F. P., 1990, “Single-phase Liquid Jet Impingement Cooling of Small Heat Sources,” Heat Transfer, Proc., International Heat Transfer Conference, pp. 149–154.
3.
Womac
,
D. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1993
, “
Correlating Equations for Impingement Cooling of Small Heat Sources with Single Circular Liquid Jets
,”
ASME J. Heat Transfer
,
115
, pp.
106
115
.
4.
Womac
,
D. J.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
,
1994
, “
Correlating Equations for Impingement Cooling of Small Heat Sources with Multiple Circular Liquid Jets
,”
ASME J. Heat Transfer
,
116
, pp.
482
486
.
5.
Ma
,
C. F.
,
Gan
,
Y. P.
,
Tian
,
Y. C.
,
Lei
,
D. H.
, and
Gomi
,
T.
,
1993
, “
Liquid Jet Impingement Heat Transfer with or without Boiling
,”
J. Thermal Science
,
2
(
1
), pp.
32
49
.
6.
Nonn, T., Dagan, Z., and Jiji, L. M., 1989, “Jet Impingement Flow Boiling of a Mixture of FC-72 and FC-87 Liquids on a Simulated Electronic Chip,” ASME HTD-Vol. 111, Heat Transfer in Electronics, pp. 121–128.
7.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
,
1990
, “
Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid
,”
ASME J. Heat Transfer
,
112
, pp.
891
898
.
8.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
,
1992
, “
Enhancement of Single-phase Heat Transfer and Critical Heat Flux from an Ultra-High-Flux Simulated Microelectronic Heat Source to a Rectangular Impinging Jet of Dielectric Liquid
,”
ASME J. Heat Transfer
,
114
, pp.
764
768
.
9.
Chrysler
,
G. M.
,
Chu
,
R. C.
, and
Simons
,
R. E.
, 1994, “Jet Impingement Boiling of a Dielectric Coolant in Narrow Gaps,” IEEE Intersociety Conference on Thermal Phenomena, pp. 1–8.
10.
Copeland
,
D.
,
1998
, “
Single-phase and Boiling Cooling of a Small Heat Source by Multiple Nozzle Jet Impingement
,”
Int. J. Heat Mass Transf.
,
39
(
7
), pp.
1395
1406
.
11.
Nakayama, W., and Copeland, D., 1994, “Heat Transfer from Chips to Dielectric Coolant: Enhanced Pool Boiling Versus Jet Impingement Cooling,” Enhanced Heat Transfer, 1(3), pp. 231–243.
12.
Garimella, S. V., and Rice, R. A., 1994, “Heat Transfer in Submerged and Confined Liquid Jet Impingement,” Heat Transfer in High Heat Flux Systems, ASME HTD-Vol. 301, pp. 59–68.
13.
Garimella
,
S. V.
, and
Rice
,
R. A.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
117
, pp.
871
877
.
14.
Sun
,
H.
,
Ma
,
C. F.
, and
Nakayama
,
W.
,
1993
, “
Local Characteristics of Convective Heat Transfer From Simulated Microelectronic Chips to Impinging Submerged Round Water Jets
,”
ASME J. Electron. Packag.
,
115
, pp.
71
77
.
15.
Maddox
,
D. E.
, and
Bar-Cohen
,
A.
,
1994
, “
Thermofluid Design of Single-phase Submerged-Jet Impingement Cooling for Electronic Components
,”
ASME J. Electron. Packag.
,
116
, pp.
237
240
.
16.
Yao, S. C., Deb, S., and Hammouda, N., 1989, “Impact Spray Boiling for Thermal Control of Electronic Systems,” ASME HTD-Vol. 111, Heat Transfer in Electronics, pp. 129–133.
17.
Mudawar, I., and Estes, K. A., 1995, “Comparison of Two-phase Electronic Cooling Using Free Jets and Sprays,” Advances in Electronic Packaging, Proc. Int. Electronic Packaging Conference, Vol. 2, pp. 975–987.
18.
Oliphant
,
K.
,
Webb
,
B. W.
, and
McQuay
,
M. Q.
,
1998
, “
An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-boiling Regime
,”
Exp. Therm. Fluid Sci.
,
18
, pp.
1
10
.
19.
Narumanchi, S. V. J., Amon, C. H., and Murthy, J. Y., 2000, “Dielectric Jet Impingement Cooling of Electronic Chips,” Proc., 34th ASME National Heat Transfer Conference, Paper No. NHTC2000-12138.
20.
Schafer
,
D. M.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1992
, “
Numerical Simulation of Laminar Convection Heat Transfer from an In-line Array of Discrete Sources to a Confined Rectangular Jet
,”
Numer. Heat Transfer, Part A
,
22
, pp.
121
141
.
21.
Wang
,
X. S.
,
Dagan
,
Z.
, and
Jiji
,
L. M.
,
1989
, “
Conjugate Heat Transfer Between a Laminar Impinging Liquid Jet and a Solid Disk
,”
Int. J. Heat Mass Transf.
,
32
(
11
), pp.
2189
2197
.
22.
Rahman, M. M., and Bula, A. J., 1998, “Numerical Modeling of Conjugate Heat Transfer During Free Liquid Jet Impingement,” ASME AES-Vol. 38, pp. 475–486.
23.
Rahman
,
M. M.
,
Bula
,
A. J.
, and
Leland
,
J.
,
1999
, “
Conjugate Heat Transfer During Free Jet Impingement of a High Prandtl Number Fluid
,”
Numer. Heat Transfer, Part B
,
36
, pp.
139
162
.
24.
Fujimoto
,
H.
,
Hirohiko
,
T.
,
Hatta
,
N.
, and
Viskanta
,
R.
,
1999
, “
Numerical Simulation of Transient Cooling of a Hot Solid by an Impinging Free Surface Jet
,”
Numer. Heat Transfer, Part A
,
36
, pp.
767
780
.
25.
Liu, X., and Lienhard, J. H., 1989, “Liquid Jet Impingement Heat Transfer on a Uniform Flux Surface,” Heat Transfer Phenomena in Radiation, Combustion and Fires, ASME HTD-Vol. 106, pp. 523–530.
26.
Liu
,
X.
,
Lienhard
,
J. H.
, and
Lombara
,
J. S.
,
1991
, “
Convective Heat Transfer by Impingement of Circular Liquid Jets
,”
ASME J. Heat Transfer
,
113
, pp.
571
581
.
27.
Liu, X., Gabour, L. A., and Lienhard, J. H., 1992, “Stagnation Point Heat Transfer During Impingement of Laminar Liquid Jets: Analysis with Surface Tension Effects,” General Papers in Heat Transfer, ASME HTD-Vol. 204, pp. 173–181.
28.
Zumbrunnen
,
D. A.
, and
Aziz
,
M.
,
1993
, “
Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet
,”
ASME J. Heat Transfer
,
115
, pp.
91
98
.
29.
Sheriff
,
H. S.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet
,”
ASME J. Heat Transfer
,
116
, pp.
886
895
.
30.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Nonlinear Dynamics of Laminar Boundary Layers in Pulsatile Stagnation Flows
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
514
523
.
31.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
, pp.
468
488
.
32.
Amon
,
C. H.
,
1993
, “
Spectral Element-Fourier Method for Transitional Flows in Complex Geometries
,”
AIAA J.
,
31
(
1
), pp.
42
48
.
33.
Amon
,
C. H.
,
1995
, “
Spectral Element-Fourier Method for Unsteady Conjugate Heat Transfer in Complex Geometry Flows
,”
J. Thermophys. Heat Transfer
,
9
(
2
), pp.
247
253
.
You do not currently have access to this content.