We study stresses and fracture due to temperature change in a flip-chip assembly at the chip/underfill interface for various thermo-mechanical properties of underfill and the device’s geometry. We conduct our calculations numerically using a finite element method, and employ the J-integral approach and calculate the stress intensity factors for fracture analysis. We assume that all materials are linear elastic and isotropic, and properties are temperature independent. We use several simplified models of flip-chip devices, while neglecting C4 solder interconnects. We represent the devices as either bi-material strips or as three different types of a three-layer model.

1.
Timoshenko
,
S. P.
,
1925
, “
Analysis of Bi-metal Thermostats
,”
J. Opt. Soc. Am.
,
11
, pp.
233
255
.
2.
Suhir
,
E.
,
1986
, “
Stresses in Bi-metal Thermostat
,”
ASME J. Appl. Mech.
,
53
, pp.
657
660
.
3.
Suhir
,
E.
,
1989
, “
Interfacial Stresses in Bi-material Thermostats
,”
ASME J. Appl. Mech.
,
56
, pp.
595
600
.
4.
Kuo
,
A. Y.
,
1989
, “
Thermal Stresses at the Edge of Bimetallic Thermostat
,”
ASME J. Appl. Mech.
,
56
, pp.
585
589
.
5.
Lau
,
J. H.
,
1989
, “
A note on the Calculation of Thermal Stresses in Electronic Packaging by Finite Element Methods
,”
ASME J. Electron. Packag.
,
111
, pp.
313
320
.
6.
Williams
,
M. L.
,
1959
, “
The Stress Around a Fault or Crack in Dissimilar Media
,”
Bull. Seismol. Soc. Am.
,
49
, pp.
199
204
.
7.
England
,
A. H.
,
1965
, “
A Crack Between Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
, pp.
400
402
.
8.
Erdogan
,
F.
,
1965
, “
Stress Distribution in Bonded Dissimilar Materials With Cracks
,”
ASME J. Appl. Mech.
,
32
, pp.
403
410
.
9.
Rice
,
J. R.
, and
Sih
,
G. C.
,
1965
, “
Plane Problems of Cracks in Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
, pp.
418
423
.
10.
Bogy
,
D. B.
,
1968
, “
Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading
,”
ASME J. Appl. Mech.
,
35
, pp.
460
466
.
11.
Bogy
,
D. B.
,
1970
, “
On the Problem of Edge-bonded Elastic Quarter Planes Loaded at the Boundary
,”
Int. J. Solids Struct.
,
6
, pp.
1287
1313
.
12.
Bogy
,
D. B.
, and
Sternberg
,
E.
,
1968
, “
The Effect of Couple-Stresses on Singularities Due to Discontinuous Loading
,”
Int. J. Solids Struct.
,
3
, pp.
757
770
.
13.
Lee
,
M.
, and
Jasiuk
,
I.
,
1991
, “
Asymptotic Expansions for the Thermal Stresses in Bonded Semi-Infinite Bi-material Strips
,”
ASME J. Electron. Packag.
,
113
, pp.
173
177
.
14.
Jiang
,
Z. Q.
,
Huang
,
Y.
, and
Chandra
,
A.
,
1997
, “
Thermal Stresses in Layered Electronic Assemblies
,”
ASME J. Electron. Packag.
,
119
, pp.
127
132
.
15.
Suhir
,
E.
,
1988
, “
An Approximate Analysis of Stresses in Multilayered Elastic Thin Films
,”
ASME J. Appl. Mech.
,
55
, pp.
143
148
.
16.
Chen
,
W. T.
, and
Nelson
,
C. W.
,
1979
, “
Thermal Stress in Bonded Joints
,”
IBM J. Res. Dev.
,
23
, pp.
178
188
.
17.
Chen
,
D.
,
Cheng
,
S.
, and
Gerhart
,
T. D.
,
1982
, “
Thermal Stresses in Laminated Beams
,”
J. Therm. Stresses
,
23
, pp.
67
84
.
18.
Pao
,
Y. H.
, and
Eisele
,
E.
,
1991
, “
Interfacial Shear and Peel Stresses in Multilayered Thin Stacks Subjected to Uniform Thermal Loading
,”
ASME J. Electron. Packag.
,
113
, pp.
164
172
.
19.
Yin
,
W. L.
,
1994
, “
Free-Edge Effects in Anisotropic Laminates Under Extension, Bending and Twisting: Part 1—A Stress-Function-Based Variational Approach
,”
ASME J. Appl. Mech.
,
61
, pp.
410
415
.
20.
Yin
,
W. L.
,
1994
, “
Free-Edge Effects in Anisotropic Laminates Under Extension, Bending and Twisting: Part 2—Eigenfuntion Analysis and the Results for Symmetric Laminates
,”
ASME J. Appl. Mech.
,
61
, pp.
416
421
.
21.
Yin
,
W. L.
,
1995
, “
Interfacial Thermal Stresses in Layered Structures: the Stepped Edge Problem
,”
ASME J. Electron. Packag.
,
117
, pp.
153
158
.
22.
Wang
,
S. S.
, and
Choi
,
I.
,
1982
, “
Boundary-Layer Effects in Composite Laminates: Part 1—Free-Edge Stress Singularities
,”
ASME J. Appl. Mech.
,
49
, pp.
541
548
.
23.
Wang
,
S. S.
, and
Choi
,
I.
,
1982
, “
Boundary-Layer Effects in Composite Laminates: Part 2—Free-Edge Stress Solutions and Basic Characteristics
,”
ASME J. Appl. Mech.
,
49
, pp.
549
560
.
24.
Webber
,
J. P. H.
, and
Morton
,
S. K.
,
1993
, “
An Analytical Solution for the Thermal Stresses at the Free Edges of Laminated Plates
,”
Compos. Sci. Technol.
,
46
, pp.
175
185
.
25.
Yao, Q., and Qu, J., 1999, “Effect of Thermal Residual Stresses on the Apparent Interfacial Fracture Toughness of Polymer/Metal Interface,” Proc., 49th Electronic Components and Technology Conference, San Diego, CA, pp. 365–368.
26.
Yao, Q., and Qu, J., 1999, “Effect of Thermal Residual Stresses on the Apparent Interfacial Fracture Toughness of Epoxy/Aluminum Interface,” 5th Int. Symp. Advanced Packaging Materials, Chateau Elan, Braselton, pp. 333–336.
27.
Peterson, D. W., Sweet, J. N., Burchett, S. N., and Hsia, A., 1997, “Stresses from Flip-Chip Assembly and Underfill; Measurements With ATC 4.1 Assembly Test Chip and Analysis by Finite Element Method,” Proc. 47th Electronic Components and Technology Conference, San Jose, CA, pp. 134–143.
28.
Zhao, J. H., Dai, X., and Ho, P. S., 1998, “Analysis and Modeling Verification for Thermal-mechanical Deformation in Flip-Chip Packages,” Proc., 48th Electronic Components and Technology Conference, Seattle, WA, pp. 336–344.
29.
Michaelides
,
S.
, and
Sitaraman
,
S. K.
,
1999
, “
Die Cracking and Reliable Die Design for Flip-Chip Assemblies
,”
IEEE Trans. Adv. Packag.
,
22
(
4
), pp.
602
613
.
30.
Hanna, C. E. and Sitaraman, S. K., 1999, “Role of Underfill Materials and Thermal Cycling on Die Stresses,” Proc., InterPACK 99, Hawaii, Vol. 26-1, pp. 795–801.
31.
Xie
,
W.
, and
Sitaraman
,
S. K.
,
2000
, “
Interfacial Thermal Stress Analysis of Anisotropic Multi-Layered Electronic Packaging Structures
,”
ASME J. Electron. Packag.
,
122
, pp.
61
66
.
32.
Wang
,
J.
,
Lu
,
M.
,
Zou
,
D.
, and
Liu
,
S.
,
1998
, “
Investigation of Interfacial Fracture Behavior of a Flip-Chip Package under a Constant Concentrated Load
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
,
21
(
1
), pp.
79
85
.
33.
Yan
,
X.
, and
Agarwal
,
R. K.
,
1998
, “
Two Test Specimens for Determining the Interfacial Fracture Toughness in Flip-Chip Assemblies
,”
ASME J. Electron. Packag.
,
120
, pp.
150
155
.
34.
Machuga, S. C., Lindsey, S. E., Moore, K. D. and Skipor, A. F., 1992, “Encapsulant of Flip-Chip Structures,” Proc., 1992 IEEE/CHMT International Electronic Manufacturing and Technology Symposium, Baltimore, MD, pp. 53–58.
35.
Yeh
,
C. P.
,
Zhou
,
W. X.
, and
Wyatt
,
K.
,
1996
, “
Parametric Finite-Element Analysis of Flip-Chip Structures
,”
Int. J. Microcircuits Electron. Packag.
,
19
, pp.
120
127
.
36.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
, pp.
127
140
.
37.
Budiansky
,
B.
,
1965
, “
On the Elastic Moduli of Some Heterogeneous Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
223
227
.
38.
Hill
,
R.
,
1965
, “
A Self-consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
21
222
.
39.
Mori, T., and Tanaka, K., 1973, “Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions,” Acta Metall., 21, pp. 571–574.
40.
Benveniste
,
Y.
,
1987
, “
A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials
,”
Mech. Mater.
,
6
, pp.
147
157
.
41.
Christensen, R. M., 1991, Mechanics of Composite Materials, Krieger Publ. Co., Malabar, FL.
42.
Mura, T., 1987, Micromechanics of Defects in Solids, 2nd Ed., Martinus Nijhoff, Dordrecht.
43.
Hashin
,
Z.
,
1983
, “
Analysis of Composite Materials—A Survey
,”
ASME J. Appl. Mech.
,
50
, pp.
481
505
.
44.
Qu, J., and Wong, C. P., 1998, “Effective Elastic Modulus of Underfill Material for Flip-Chip Applications,” Proc., 48th Electronic Components and Technology Conference, Seattle, WA, pp. 848–850.
45.
Eshelby
,
J. D.
,
1975
, “
The Elastic Energy-Momentum Tensor
,”
J. Elast.
,
5
, pp.
321
35
.
46.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp.
379
386
.
47.
Smelser
,
R. E.
, and
Gurtin
,
M. E.
,
1977
, “
On the J-integral for Bi-material Bodies
,”
Int. J. Fract.
,
13
, pp.
382
384
.
48.
Park
,
J. H.
, and
Earmme
,
Y. Y.
,
1986
, “
Application of Conservation Integrals to Interfacial Crack Problems
,”
Mech. Mater.
,
5
, pp.
261
276
.
49.
Sun
,
C. T.
, and
Wu
,
X. X.
,
1996
, “
On the J-integral in Periodically Layered Composites
,”
Int. J. Fract.
,
77
, pp.
89
100
.
50.
Weichert
,
D.
, and
Schulz
,
M.
,
1993
, “
J-Integral Concept for Multi-phase Materials
,”
Comput. Mater. Sci.
,
1
, pp.
241
248
.
51.
Haddi
,
A.
, and
Weichert
,
D.
,
1996
, “
On the Computation of the J-integral for Three-dimensional Geometries in Inhomogeneous Materials
,”
Comput. Mater. Sci.
,
5
, pp.
143
150
.
52.
Haddi
,
A.
, and
Weichert
,
D.
,
1997
, “
Elastic-plastic J-integral in Inhomogeneous Materials
,”
Comput. Mater. Sci.
,
8
, pp.
251
260
.
53.
Lin
,
T. Y.
, and
Tay
,
A. A. O.
, 1997, “A J-Integral Criterion for Delamination of Bi-Material Interfaces Incorporating Hydrothermal Stress,” Advances in Electronic Packaging, 2, pp. 1421–1427.
54.
Charalambides
,
P. G.
,
Lund
,
J.
,
Evans
,
A. G.
, and
McMeeking
,
R. M.
,
1989
, “
A Test Specimen for Determining the Fracture Resistance of Bi-Material Interfaces
,”
ASME J. Appl. Mech.
,
56
, pp.
77
82
.
55.
Hamoush
,
S. A.
, and
Ahmad
,
S. H.
,
1989
, “
Mode I and Mode II Stress Intensity Factors for Interfacial Cracks in Bi-material Media
,”
Eng. Fract. Mech.
,
33
, pp.
421
427
.
56.
Pao
,
Y. H.
, and
Pan
,
T. Y.
,
1990
, “
Determination of Stress Intensity Factors for Interfacial Cracks in Bi-material Systems
,”
ASME J. Electron. Packag.
,
112
, pp.
154
161
.
57.
Matos
,
P. P. L.
,
McMeeking
,
R. M.
,
Charalambides
,
P. G.
, and
Drory
,
M. D.
,
1989
, “
A Method for Calculating Stress Intensities in Bi-material Fracture
,”
Int. J. Fract.
,
40
, pp.
235
254
.
58.
ABAQUS, Version 5.6, 1995, Hibbit, Karlsson & Sorensen, Inc., USA.
59.
Bogy
,
D. B.
, and
Wang
,
K. C.
,
1971
, “
Stress Singularities at Interface Corners in Bonded Dissimilar Isotropic Elastic Materials
,”
Int. J. Solids Struct.
,
7
, pp.
993
1005
.
60.
Gall, C. A., Qu, J. and McDowell, D. L., 1996, “Delamination Cracking in Encapsulanted Flip Chip,” Proc., 46th Electronic Components and Technology Conference, Orlando, FL, pp. 430–434.
61.
Wu
,
C. M. L.
,
Lai
,
J. K. L.
, and
Wu
,
Y.
,
1998
, “
Thermal-mechanical Interface Crack Behavior of a Surface Mount Solder Joint
,”
Finite Elem. Anal. Design
,
30
, pp.
19
30
62.
Rice
,
J. R.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
32
, pp.
418
423
.
63.
Kanninen, M. F., and Popelar, C. H., 1985, Advanced Fracture Mechanics, Oxford University Press, New York, NY.
64.
Park, J. E., Jasiuk, I., and Zubelewicz, A., 2003, “Micromechanics-Based Interfacial Stress Analysis and Fracture in Electronic Packaging Assemblies with Heterogeneous Underfill,” ASME J. Electron. Packag., accepted for publication.
You do not currently have access to this content.