A simple non-local modified beam model is presented to evaluate interfacial thermal stresses in bimaterial elastic beams. The model has its root in an earlier model (Suhir 1986) which assumes that the longitudinal interfacial displacement at a point depends on the interfacial shear stress at that point. Different than that earlier local model, however, the present non-local model assumes that the longitudinal interfacial displacement at a point also depends on the second gradient of the interfacial shear stress at that point. The present model satisfies both the zero-longitudinal force and the zero-shear stress boundary conditions at the free edges, and the interfacial peeling stress given by the present model is self-equilibrated. Remarkably, the present model leads to a fourth-order differential equation for the interfacial shear stress, and is considerably simpler than other known modified beam models satisfying the abovementioned conditions. This desirable feature of the present model is believed to be significant especially when the model is applied to multilayered materials. In particular, the interfacial shear stress given by the present model is found to be in reasonably good agreement with some known numerical results.

1.
Bar-Cohen
,
A.
,
1992
, “
State-of-the-Art and Trends in the Thermal Packaging of Electronic Equipment
,”
ASME J. Electron. Packag.
,
114
, pp.
257
270
.
2.
Ru
,
C. Q.
,
2000
, “
Stress Analysis of Thermal Inclusions With Interior Voids and Cracks
,”
ASME J. Electron. Packag.
,
122
, pp.
192
199
.
3.
Timoshenko
,
S.
,
1925
, “
Analysis of Bi-Metal Thermostats
,”
J. Opt. Soc. Am.
,
11
, pp.
233
255
.
4.
Chen
,
W. T.
, and
Nelson
,
C. W.
,
1979
, “
Thermal Stress in Bonded Joints
,”
IBM J. Res. Dev.
,
23
, pp.
179
188
.
5.
Wang
,
S. S.
, and
Choi
,
I.
,
1982
, “
Boundary-Layer Effects in Composite Laminates. Part 1-Free-Edge Stress Singularities. Part 2-Free-Edge Stress Solution and Basic Characteristics
,”
ASME J. Appl. Mech.
,
49
, pp.
541
560
.
6.
Suhir
,
E.
,
1986
, “
Stresses in Bi-Metal Thermostats
,”
ASME J. Appl. Mech.
,
53
, pp.
657
660
.
7.
Suhir
,
E.
,
1988
, “
An Approximate Analysis of Stresses in Multilayered Elastic Thin Films
,”
ASME J. Appl. Mech.
,
55
, pp.
143
148
.
8.
Suhir
,
E.
,
1989
, “
Interfacial Stresses in Bimetal Thermostats
,”
ASME J. Appl. Mech.
,
56
, pp.
595
600
.
9.
Cho
,
K. N.
,
Striz
,
A. G.
, and
Bert
,
C. W.
,
1989
, “
Thermal Stress Analysis of Laminate Using Higher-Order Theory in Each Layer
,”
J. Therm. Stresses
,
12
, pp.
321
332
.
10.
Kuo
,
A. Y.
,
1989
, “
Thermal Stresses at the Edge of a Bimetallic Thermostat
,”
ASME J. Appl. Mech.
,
56
, pp.
585
589
.
11.
Erdogan
,
F.
, and
Joseph
,
P. F.
,
1990
, “
Mechanical Modeling of Multilayered Films on an Elastic Substrate Part I: Analysis. Part II: Results and Discussion
,”
ASME J. Electron. Packag.
,
112
, pp.
309
326
.
12.
Jiang
,
Z. Q.
,
Huang
,
Y.
, and
Chandra
,
A.
,
1997
, “
Thermal Stresses in Layered Electronic Assemblies
,”
ASME J. Electron. Packag.
,
119
, pp.
127
132
.
13.
Eischen
,
J. W.
,
Chung
,
C.
, and
Kim
,
J. H.
,
1990
, “
Realistic Modeling of Edge Effect Stresses in Bimetallic Elements
,”
ASME J. Electron. Packag.
,
112
, pp.
16
23
.
14.
Glaser
,
J. G.
,
1990
, “
Thermal Stresses in Compliantly Jointed Materials
,”
ASME J. Electron. Packag.
,
112
, pp.
24
29
.
15.
Pan
,
T. Y.
, and
Pao
,
Y. H.
,
1990
, “
Deformation in Multilayer Stacked Assemblies
,”
ASME J. Electron. Packag.
,
112
, pp.
30
34
.
16.
Pao
,
Y. H.
, and
Eisele
,
E.
,
1991
, “
Interfacial Shear and Peel Stresses in Multilayered Thin Stacks Subjected to Uniform Thermal Loading
,”
ASME J. Electron. Packag.
,
113
, pp.
164
172
.
17.
Pionke
,
C. D.
, and
Wempner
,
G.
,
1991
, “
The Various Approximations of the Bimetallic Thermostatic Strip
,”
ASME J. Appl. Mech.
,
58
, pp.
1015
1020
.
18.
Tsai
,
M. Y.
, and
Morton
,
J.
,
1991
, “
The Stresses in a Thermally Loaded Bimaterial Interface
,”
Int. J. Solids Struct.
,
28
, pp.
1053
1075
.
19.
Mirman
,
B.
,
1992
, “
Interlaminar Stresses in Layered Beams
,”
ASME J. Electron. Packag.
,
114
, pp.
389
396
.
20.
Post
,
D.
,
Wood
,
J. D.
,
Han
,
B.
,
Parks
,
V. J.
, and
Gerstle
,
F. P.
,
1994
, “
Thermal Stresses in a Bimaterial Joint: An Experimental Analysis
,”
ASME J. Appl. Mech.
,
61
, pp.
192
198
.
21.
Bharatha
,
S.
, and
Levinson
,
M.
,
1980
, “
A Theory of Elastic Foundations
,”
Arch. Ration. Mech. Anal.
,
74
, pp.
249
266
.
22.
Kerr
,
A. D.
,
1984
, “
On the Formal Development of Elastic Foundation Models
,”
Ingenieur-Archiv
,
54
, pp.
455
464
(in English).
23.
Bert
,
C. W.
,
1994
, “
Bending of Plates on Thin Compressible Foundations
,”
ASME J. Appl. Mech.
,
61
, pp.
497
498
.
24.
Gecit
,
M. R.
, and
Erdogan
,
F.
,
1978
, “
The Effect of Adhesive Layers on the Fracture of Laminated Structures
,”
ASME J. Eng. Mater. Technol.
,
100
, pp.
2
9
.
25.
Tullini
,
N.
,
Savoia
,
M.
, and
Horgan
,
C. O.
,
1997
, “
End Effects in Multilayered Orthotropic Strips With Imperfect Bonding
,”
Mech. Mater.
,
26
, pp.
23
34
.
26.
Kim
,
J. S.
,
Paik
,
K. W.
, and
Oh
,
S. H.
,
1999
, “
The Multilayer-Modified Stoney’s Formula for Laminated Polymer Composites on a Silicon Substrate
,”
J. Appl. Phys.
,
86
, pp.
5474
5479
.
27.
Suhir
,
E.
,
2001
, “
Analysis of Interfacial Thermal Stresses in a Trimaterial Assembly
,”
J. Appl. Phys.
,
89
, pp.
3685
3694
.
You do not currently have access to this content.