Multi-layered stacks are commonly used in microelectronic packaging. Traditionally, these systems are designed using linear-elastic analysis either with analytical solutions or finite element method. Linear-elastic analysis for layered structures yields very conservative results due to stress singularity at the free edge. In this paper, it is shown that a damage mechanics based nonlinear analysis not just leads to a more realistic analysis but also provides more accurate stress distribution. In this paper these two approaches are compared. Moreover, mesh sensitivity of the finite element analysis in stack problems is studied. It is shown that the closed form and elastic finite element analyses can only be used for preliminary studies and elastic finite element method is highly mesh sensitive for this problem. In elastic analysis the stress singularity at the free edge makes mesh selection very difficult. Even when asymptotic analysis is used at the free edge, the results are very conservative compared to an inelastic analysis. Rate sensitive inelastic analysis does not suffer from the stress singularity and mesh sensitivity problems encountered in elastic analysis.

1.
Chen
,
D.
,
Cheng
,
S.
, and
Gerhardt
,
T. D.
,
1982
, “
Thermal Stresses in Laminated Beams
,”
J. Therm. Stresses
,
5
, pp.
67
84
.
2.
Glaser, J. C., 1989, “Thermal Stresses in Compliantly-Joined Materials,” ASME Winter Annual Meeting, Paper No. 89-WA/EEP-14, San Francisco, CA, Dec.
3.
Jiang
,
Z. Q.
,
Huang
,
Y.
, and
Chandra
,
A.
,
1997
, “
Thermal Stresses in Layered Electronic Assemblies
,”
ASME J. Electron. Packag.
,
119
, pp.
127
133
.
4.
Timoshenko
,
S.
,
1925
, “
Analysis of Bi-Metal Thermostats
,”
J. Opt. Soc. Am.
,
11
, pp.
233
255
.
5.
Boley
,
B. A.
, and
Testa
,
R. B.
,
1969
, “
Thermal Stresses in Composite Beams
,”
Int. J. Solids Struct.
,
5
, pp.
1153
1169
.
6.
Wang
,
S. S.
, and
Crossman
,
F. W.
,
1977
, “
Edge Effects on Thermally Induced Stresses in Composite Laminates
,”
J. Compos. Mater.
,
11
, pp.
300
312
.
7.
Grimado
,
P. B.
,
1978
, “
Interlaminar Thermoelastic Stresses in Layered Beams
,”
J. Therm. Stresses
,
1
, pp.
75
86
.
8.
Wang, S. S., and Choi, I., 1979, “Boundary Layer Stresses in Angleply Composite Laminates,” Modern Developments in Composite Materials and Structures, J. R. Visson, ed., pp. 315–341.
9.
Chang
,
F.-V.
,
1983
, “
Thermal Contact Stresses of Bi-Metal Strip Thermostat
,”
Appl. Math. Mech.
,
4
, Tsinghua University, Beijing, China, pp.
363
376
.
10.
Saganuma
,
K.
,
Okamoto
,
T.
, and
Koizumi
,
M.
,
1984
, “
Effect of Interlayers in Ceramic-Metal Joints with Thermal Expansion Mismatch
,”
J. Am. Ceram. Soc.
,
67
, pp.
C256–C257
C256–C257
.
11.
Blech
,
J. J.
, and
Kantor
,
Y.
,
1984
, “
An Edge Problem Having No Singularity at the Corner
,”
Comput. Struct.
,
18
, pp.
609
617
.
12.
Kuo
,
A. Y.
,
1989
, “
Thermal Stresses at the Edge of a Bimetallic Thermostat
,”
ASME J. Appl. Mech.
,
56
, pp.
585
589
.
13.
Reddy, J. N., and Miravete, A., 1995, Practical Analysis of Composite Laminates, CRC Press, New York.
14.
Hutchinson, J. W., 1996, Mechanics of Thin Films and Multilayers, Solid Mechanics Technical University of Denmark Press.
15.
Dash
,
W. C.
,
1955
,
Phys. Rev. A
,
98
, p.
1536
1536
.
16.
Taylor
,
T. C.
, and
Yuan
,
F. L.
,
1962
, “
Thermal Stress and Fracture in Shear Constrained Semiconductor Device Structures
,”
International Radio Engineers Trans. on Elect. Dev.
,
ED-9
, pp.
303
308
.
17.
Bogy
,
D. B.
,
1968
, “
Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loadings
,”
ASME J. Appl. Mech.
,
35
, pp.
460
466
.
18.
Bogy
,
D. B.
,
1970
, “
On the Problem of Edge-Bonded Elastic Quarter-Planes Loaded at the Boundary
,”
Int. J. Solids Struct.
,
6
, pp.
1287
1313
.
19.
Hein
,
V. L.
, and
Erdogan
,
F.
,
1971
, “
Stress Singularities in a Two-Material Wedge
,”
Int. J. Fract. Mech.
,
7
, No.
3
, pp.
317
330
.
20.
Zeyfang
,
R.
,
1971
, “
Stresses and Strains in a Plate Bonded to a Substrate: Semiconductor Devices
,”
Solid-State Electron.
,
14
, pp.
1035
1039
.
21.
Reinhart
,
F. K.
, and
Logan
,
R. A.
,
1973
, “
Interface Stress of Alx Gal-xAs-GaAs layer structures
,”
J. Appl. Phys.
,
44
, No.
7
, pp.
3171
3175
.
22.
Roll
,
K.
,
1976
, “
Analysis of Stress and Strain Distribution in Thin Films and Substrates
,”
J. Appl. Phys.
,
47
, No.
7
, pp.
3224
3229
.
23.
Olsen
,
G. H.
, and
Ettenberg
,
M.
,
1977
, “
Calculated Stresses in Multilayered Heteroepitaxial Structures
,”
J. Appl. Phys.
,
4
, No.
6
, pp.
2543
2547
.
24.
Vilms
,
J.
, and
Kerps
,
D.
,
1982
, “
Simple Stress Formula for Multilayered Thin Films on a Thick Substrate
,”
J. Appl. Phys.
,
53
, No.
3
, pp.
7
13
.
25.
Glascock
,
H. H.
, and
Webster
,
H. J.
,
1984
, “
Structural Copper: A Pliable High Conductance Material for Bonding to Silican Power Devices
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
CHMT-6
, No.
4
, pp.
21
28
.
26.
Suhir, E. 1986, “Stresses in Adhesively Bonded Bi-Material Assemblies Used in Electronic Packaging,” Elect. Pack. Mat. Science-II, MRS Symp. Proc., pp. 133–138.
27.
Suhir
,
E.
,
1986
, “
Stresses in Bi-Metal Thermostats
,”
ASME J. Appl. Mech.
,
53
, No.
3
, pp.
657
660
.
28.
Suhir, E., 1986, “Calculated Thermally Induced Stresses in Adhesively Bonded and Soldered Assemblies,” Int. Symp. Microelect., pp. 383–392.
29.
Suhir, E., 1988, “An Approximate Analysis of Stresses in Multilayered Elastic Thin Films,” 1988 ASME Winter Annual Meeting, IL, Nov 28–Dec 2, WA/APM-14.
30.
Suhir
,
E.
,
1989
, “
Interfacial Stresses in Bimetal Thermostats
,”
ASME J. Appl. Mech.
,
56
, pp.
595
600
.
31.
Suhir, E., 1995, “Global and Local Thermal Mismatch Stresses in an Elongated Bi-Material Assembly Adhesively Bonded at the Ends,” Symp. on Structural Analysis in Microelectronic and Fiber Optic Systems, 1995 ASME Winter Annual Meeting, EEP/12, pp. 101–105.
32.
Gerstle, F. P. Jr., and Chambers, R. S., 1987, “Analysis of End Stresses in Glass-Metal Bimaterial Strips,” Technology of Glass, Ceramic, or Ceramic-Glass to Metal Sealing, Moddeman, W. E., Mertem, C. S., and Kramer, D. P., eds., ASME, MD-Vol. 4, pp. 47–59.
33.
Yin
,
W. L.
,
1991
, “
Thermal Stresses and Free-Edge Effects in Laminated Beams: A Variational Approach Using Stress Functions
,”
ASME J. Electron. Packag.
,
113
, pp.
68
75
.
34.
Pao, Y. H., and Eisele, E., 1991, “Interfacial Shear and Peel Stresses in Multilayered Thin Stacks Subjected to Uniform Thermal Loading,” Vol. 113, pp. 164–172.
35.
Morgan
,
H. S.
,
1991
, “
Thermal Stresses in Layered Electrical Assemblies Bonded With Solder
,”
ASME J. Electron. Packag.
,
113
, pp.
350
354
.
36.
Lee
,
M.
, and
Jasiuk
,
I.
,
1991
, “
Asymptotic Expansions for the Thermal Stresses in Bonded Semi-Infinite Bimaterial Strips
,”
ASME J. Electron. Packag.
,
113
, pp.
173
177
.
37.
Basaran, C., 1996, “A Comparison of Viscoplastic and Plastic Constitutive Models for Pb/Sn Solder Zalloys,” ASME-EEP Structural Analysis in Microelectronics and Fiber Optics, Vol. 16, pp. 149–154.
38.
Zhao
,
Y.
,
Basaran
,
C.
,
Cartwright
,
A.
, and
Dishongh
,
T.
,
2000
, “
Thermomechanical Behavior of Microscale Solder Joints,” An Experimental Observation
,
J. Mech. Behav. Mater.
,
10
, No.
3
, pp.
135
146
.
39.
Hacke
,
P. L.
,
Sprecher
,
A. F.
, and
Conrad
,
H.
,
1997
, “
Microstructure Coarsening During Thermomechanical Fatigue of Pb/Sn Solder Joints
,”
J. Electron. Mater.
,
26
, p.
7
7
.
40.
Kashyap
,
P.
, and
Murthy
,
G. S.
,
1981
, “
Experimental Constitutive Relations for the High Temperature Deformation of a Pb/Sn Eutectic Alloy
,”
J. Mater. Sci. Eng.
,
50
, pp.
205
213
.
41.
Basaran
,
C.
, and
Yan
,
C.
,
1998
, “
A Thermodynamic Framework for Damage Mechanics of Solder Joints
,”
ASME J. Electron. Packag.
,
120
, pp.
379
384
.
42.
Suhir, E., and Lee, Y. C., 1988, “Thermal, Mechanical and Environmental Durability Design Methodologies,” chapter packaging in Electronic Materials Handbook, vol 1.
43.
Suhir
,
E.
,
1987
, “
Stresses in Multilayered Thin Films on a Thick Substrate, Heteroepitacy-on-Silicon II
,”
Mater. Res. Soc. Symp. Proc.
,
91
, pp.
73
80
.
You do not currently have access to this content.