Active thermal control for electronics on Mars rovers imposes a serious penalty in weight, volume, power consumption, and reliability. Thus, we propose that thermal control be eliminated for future rovers. From a functional standpoint there is no reason that the electronics could not operate over the entire temperature range of the Martian environment, which can vary from a low of ≈−90°C to a high of ≈+20°C during the Martian night and day. The upper end of this range is well within that for conventional electronics. Although the lower end is considerably below that for which conventional—even high-reliability—electronics is designed or tested, it is well established that electronic devices can operate to such low temperatures. The primary concern is reliability of the overall electronic system, especially in regard to the numerous daily temperature cycles that it would experience over the duration of a mission on Mars. Accordingly, key reliability issues have been identified for elimination of thermal control on future Mars rovers. One of these is attachment of semiconductor die onto substrates and into packages. Die attachment is critical since it forms a mechanical, thermal, and electrical interface between the electronic device and the substrate or package. This paper summarizes our initial investigation of existing information related to this issue, in order to form an opinion whether die attachment techniques exist, or could be developed with reasonable effort, to withstand the Mars thermal environment for a mission duration of approximately one earth year. Our conclusion, from a review of literature and personal contacts, is that die attachment can be made sufficiently reliable to satisfy the requirements of future Mars rovers. Moreover, it appears that there are several possible techniques from which to choose and that the requirements could be met by judicious selection from existing methods using hard solders, soft solders, or organic adhesives. Thus, die attachment does not appear to be a roadblock to eliminating thermal control for rover electronics. We recommend that this be further investigated and verified for the specific hardware and thermal conditions appropriate to Mars rovers.

1.
Daum
,
W.
,
Burdick
,
W. E.
, Jr.
, and
Fillion
,
R. A.
,
1993
, “
Overlay High-Density Interconnect: a Chips-First Multichip Module Technology
,”
Computer
,
26
, No.
4
, pp.
23
29
.
2.
Fillion
,
R. A.
,
Wojnarowski
,
R. J.
,
Gorcyzca
,
T. B.
,
Wildi
,
E. J.
, and
Cole
,
H. S.
,
1995
, “
Development of a Plastic Encapsulated Multichip Technology for High Volume, Low Cost Commercial Electronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
,
18
, No.
1
, pp.
59
65
.
3.
Kolawa, E., and Sokolowski, W., 1998, “Survivability Studies of Low-Temperature Electronics for Future Mars Rovers,” Internal JPL Presentation, 4 May.
4.
Brandon, E., 1997, “Overview of Low-Temperature Electronics for Future Mars Rover Missions,” JPL Internal Report, 9 Sept.
5.
Olsen
,
D. R.
, and
Berg
,
H. M.
,
1979
, “
Properties of Die Bond Alloys Relating to Thermal Fatigue
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
CHMT-2
, No.
2
, pp.
257
263
.
6.
Ainsworth
,
P. A.
,
1971
, “
Formation and Properties of Soft Soldered Joints
,”
Metals Mater.
,
5
, No.
11
, pp.
374
379
.
7.
Jaffee
,
R. I.
,
Minarcik
,
E. J.
, and
Gonser
,
B. W.
,
1948
, “
Low-Temperature Properties of Lead-Based Solders and Soldered Joints
,”
Metal Progress
,
54
, No.
6
, pp.
843
845
.
8.
Jones, W. K., Liu, Y. Q., Zampino, M. A., and Gonzalez, G. L., 1996, “The At-Temperature Mechanical Properties of Lead-Tin Based Alloys,” Proc.—ISHM Int. Symposium on Microelectronics, Minneapolis, Minnesota, 8–10 Oct., pp. 322–327.
9.
Jones, W. K., Liu, Y., Zampino, M. A., and Gonzalez, G., 1996, “Mechanical Properties of Pb-Sn-Ag Solders from −200°C to 150°C,” Second Int. Symposium on Electronic Packaging Technology, Shanghai, China, 9–12, Dec., pp. 235–240.
10.
Jones
,
W. K.
,
Liu
,
Y.
,
Zampino
,
M. A.
, and
Gonzalez
,
G.
,
1997
, “
The Mechanical Properties of Lead-Tin Based Solders in the Temperature Range from −200°C to 150°C
,”
Int. J. Microcircuits Electron. Packag.
,
20
, No.
2
, pp.
150
154
.
11.
Jones, W. K., Liu, Y., Zampino, M. A., Gonzalez, G., and Shah, M., 1997, “A Study on Mechanical Properties of Eutectic and Solid Solution Pb-Sn-Ag Solders from −200°C to 150°C,” Design and Reliability of Solders and Solder Interconnections, Mahidhara, R. K., Frear, D. R., Sastry, S. M. L., Murty, K. L., Liaw, P. K., and Winterbottom, W., eds., The Minerals, Metals & Materials Society, pp. 85–96.
12.
Liu, Y., Jones, W. K., Zampino, M. A., and Gonzalez, G., 1996, “A Study on Fracture Mechanism of Two Types of Solder at Low Temperature,” Second Int. Symposium on Electronic Packaging Technology, Shanghai, China, 9–12 Dec., pp. 460–465.
13.
Reichenecker, W. J., 1982, “Impact Properties of Some Bulk Solder Alloys in the Temperature Range −130°C to +150°C,” Westinghouse R&D Center Report 82-1D4-TAPOG-P1, 10 May.
14.
Reichenecker, W. J., 1981, “Shear Strength of Some Solder Alloys at −130°C, Room Temperature and +150°C,” Westinghouse R&D Center Report 81-7D4-PHASL-P2, 30 Sept.
15.
Reichenecker
,
W. J.
,
1983
, “
Shear Strength of Solder Alloys
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
97
, No.
6
, pp.
12
13
.
16.
Fast
,
R. W.
,
Craddock
,
W. W.
,
Kobayashi
,
M.
, and
Mruzek
,
M. T.
,
1988
, “
Electrical and Mechanical Properties of Lead/Tin Solders and Splices for Superconducting Cables
,”
Cryogenics
,
28
, pp.
7
9
.
17.
Mruzek, M. T., 1980, “Properties and Methods of Lead/Tin Splices for Superconductors,” Fermilab Report, TM-994, 2701.000, Sept. 1980, 18 pp.
18.
Nyilas, A., and Zhang, J., 1990, “4 K Tensile Measurements of Different Solder Alloys,” Kernforschungszentrum Karlsruhe (now Forschungszentrum Karlsruhe) Internal Report, Contract 5183/90 of Project EW-293607, Oct.
19.
Plo¨tner
,
M.
,
Donat
,
B.
, and
Benke
,
A.
,
1991
, “
Deformation Properties of Indium-Based Solders at 294 and 77 K
,”
Cryogenics
,
31
, pp.
159
162
.
20.
Kalish
,
H. S.
, and
Dunkerley
,
F. J.
,
1949
, “
The Low Temperature Properties of Tin and Tin-Lead Alloys
,”
Trans. Am. Inst. Min., Metall. Eng.
,
180
, pp.
637
656
.
21.
MacIntosh, R. M., 1966, “Tin in Cold Service” Tin and its Uses, No. 72, pp. 7–10.
22.
Firth, G. C., and Watkins, V. E. Jr., 1986, “An Interim Report on Investigation of Low Temperature Solders for Cryogenic Wind Tunnel Models,” Joining Technologies for the 1990s: Welding, Brazing, Soldering, Explosive, Solid-State, Adhesive, Buckley, J. D. and Stein, B. A., eds., Noyes Data Corp., NJ, pp. 20–33.
23.
Hall, E. T. Jr., 1986, “NTF—Soldering Technology Development for Cryogenics,” Joining Technologies for the 1990s: Welding, Brazing. Soldering, Explosive, Solid-State, Adhesive, Buckley, J. D. and Stein, B. A., eds., Noyes Data Corp., NJ, pp. 34–51.
24.
Yoshioka
,
S.
,
Tani
,
S.
,
Kumusawa
,
M.
, and
Inoue
,
A.
,
1990
, “
Low Cycle Fatigue Properties of Solder Material (36Pb62Sn2Ag) at Low Temperatures
,”
J. Soc. Mater. Sci. Jpn.
,
39
, No.
442
, pp.
908
913
(in Japanese).
25.
Tong, H. M., Mok, L., Grebe, K. R., Yeh, H. L., Srivastava, K. K., and Coffin, J. T., 1989, “Parylene Encapsulation of Ceramic Packages for Liquid Nitrogen Application,” Proc.—Int. Conference on Electronic Components and Materials, Beijing, China, 7–10 Nov.
26.
Tong, H. M., Mok, L., Grebe, K. R., Yeh, H. L., Srivastava, K. K., and Coffin, J. T., 1990, “Parylene Encapsulation of Ceramic Packages for Liquid Nitrogen Application,” 1990 Proc.—40th Electronic Components and Technology Conference, Las Vegas, Nevada, 20–23 May, Vol. 1, pp. 345–350.
27.
Tong
,
H.-M.
,
Mok
,
L. S.
,
Grebe
,
K. R.
,
Yeh
,
H. L.
,
Srivastava
,
K. K.
, and
Coffin
,
J. T.
,
1993
, “
Effects of Parylene Coating on the Thermal Fatigue Life of Solder Joints in Ceramic Packages
,”
IEE Trans. Compon., Hybrids, Manuf. Technol.
,
16
, No.
5
, pp.
571
576
.
28.
Plo¨tner, M., Sadowski, G., Rzepka, S., and Blasek, G., 1991, “Aspects of Indium Solder Bumping and Indium Bump Bonding Useful for Assembling Cooled Mosaic Sensors,” Hybrid Circuits, No. 25, pp. 27–30.
29.
Hashimoto
,
K.
,
Ochiai
,
M.
,
Karasawa
,
K.
, and
Nakanishi
,
T.
,
1991
, “
Flip-Chip Interconnection Technology for Packaging of VLSI Operated in Liquid Nitrogen
,”
IEICE Trans.
,
E74
, No.
8
, pp.
2362
2368
.
30.
Hashimoto
,
K.
,
Nakanishi
,
T.
, and
Ochiai
,
M.
,
1992
, “
Flip-Chip Connection Materials for Packaging of VLSIs Operating in Liquid Nitrogen
,”
Fujitsu Sci. Tech. J.
,
28
, No.
3
, pp.
301
309
.
31.
Yamamoto, H., 1991, “Multichip Module Packaging for Cryogenic Computers,” IEEE Int. Symposium on Circuits and Systems, Singapore, 4, pp. 2296–2299.
32.
Jones, W. K., Liu, Y. Q., and Shah, M., 1997, “Mechanical Properties of Sn-In and Pb-In Solders at Low Temperature,” Proc.—3rd Int. Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, Braselton, Georgia, 9–12 Mar., pp. 64–67.
33.
Yeh
,
J. T. C.
,
1982
, “
Characterization of In-Based Eutectic Alloys Used in Josephson Packaging
,”
Metall. Trans. A
,
13A
, pp.
1547
1562
.
34.
Reed
,
R. P.
,
McCowan
,
C. N.
,
Delgado
,
L. A.
, and
McColskey
,
J. D.
,
1988
, “
Tensile Strength and Ductility of Indium
,”
Mater. Sci. Eng. A
,
A102
, pp.
227
236
.
35.
Reed, R. P., and Walsh, R. P., 1992, “Creep of Indium at Low Temperatures,” Advances in Cryogenic Engineering Materials, 38A, pp. 117–126; Proc.—Ninth Int. Cryogenic Materials Conf., Huntsville, AL, 11–14 June 1991.
36.
Swenson
,
C. A.
,
1955
, “
Properties of Indium and Thallium at Low Temperatures
,”
Phys. Rev.
,
100
, No.
6
, pp.
1607
1614
.
1.
Caulfield, T., Purushothaman, S., and Waldman, D. P., 1984, “Aging Response and Cryogenic Mechanical Properties of an In-Sn Eutectic Solder Alloy for Josephson Packaging,” Advances in Cryogenic Engineering Materials, 30, pp. 311–318;
2.
Proc.—Fifth Int. Cryogenic Materials Conf., Colorado Springs, Colorado, 15–17 Aug. 1983.
1.
Purushothaman
,
S.
, and
Caulfield
,
T.
,
1984
, “
On the Differences in the Cryogenic Tensile Properties of the Constituent Phases in the In-Sn Eutectic Alloy
,”
Scr. Metall.
,
18
, No.
2
, pp.
183
184
.
2.
Yeh
,
J. T. C.
,
1984
, “
Mechanical Properties of In-Based Eutectic Alloy Solders Used in Josephson Packaging
,”
Cryogenics
,
24
, pp.
261
265
.
3.
McNeil
,
M. B.
,
1963
, “
The Properties of the Intermetallic Phases in the System Au-Sn
,”
J. Electrochem. Soc.
,
110
, No.
11
, pp.
1169
1170
.
4.
Matijasevic
,
G. S.
,
Wang
,
C. Y.
, and
Lee
,
C. C.
,
1990
, “
Void Free Bonding of Large Silicon Dice Using Gold-Tin Alloys
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
, No.
4
, pp.
1128
1134
.
5.
Matijasevic, G. S., Wang, C. Y., and Lee, C. C., 1990, “Extremely Reliable Bonding of Large Silicon Dice Using Gold-Tin Alloy,” 1990 Proc.—40th Electronic Components and Technology Conf., Las Vegas, Nevada, 1, pp. 786–790.
6.
Lee
,
C. C.
, and
Matijasevic
,
G. S.
,
1989
, “
Highly Reliable Die Attachment on Polished GaAs Surfaces Using Gold-Tin Eutectic Alloy
,”
IEEE Trans. Compon. Hybrids, Manuf. Technol.
,
12
, No.
3
, pp.
406
409
.
7.
Matijasevic, G. S., and Lee, C. C., 1989, “A Reliability Study of Au-Sn Eutectic Bonding with GaAs Dice,” 27th Annual Proc.—Reliability Physics, 11–13 Apr., Phoenix, AZ, pp. 137–140.
8.
Chen
,
C.-L.
,
Johnson
,
R. W.
,
Jaeger
,
R. C.
,
Cornelius
,
M. B.
, and
Foster
,
W. A.
,
1990
, “
Packing Technology for a Low Temperature Astrometric Sensor Array
,”
IEEE Trans. Compon., Hybrids, and Manuf. Technol.
,
13
, No.
4
, pp.
1083
1089
.
1.
Goldfarb
,
S.
,
Tower
,
J. R.
,
Bigler
,
R. R.
, and
Stein
,
S. J.
, 1982, “Thick Film on Silicon for an Infrared Electro-Optical Array,” Proc.—ISHM Int. Microelectronics Symposium, Reno, Nevada, 15–17 Nov.;
2.
Int. J. Hybrid Microelectron.
,
5
, No. 2, pp.
158
162
.
1.
Goldfarb, S., Bigler, R. R., and Strong, R. T., 1985, “Thick Film Hybrid Application to Cryogenic Infrared Imaging Arrays,” Proc.—ISHM Int. Symposium on Microelectronics, Anaheim, California, 11–14 Nov., pp. 162–167.
2.
Ulrich, R., and Rajan, S., 1993, “Immersion Cooling of Wirebonded Chips in Liquid Nitrogen for Superconducting MCM’s,” Proc.—1993 Int. Electronics Packaging Conference, San Diego, CA, 12–15 Sept., pp. 82–89.
3.
Ulrich
,
R. K.
, and
Rajan
,
S.
,
1995
, “
Substrate Temperatures of Liquid Nitrogen Cooled Multichip Modules Utilizing Wirebonded Die
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
18
, No.
4
, pp.
827
834
.
4.
Ulrich
,
R. K.
, and
Rajan
,
S. T.
,
1996
, “
Thermal Performance of an MCM Flip-Chip Assembly in Liquid Nitrogen
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
19
, No.
4
, pp.
451
457
.
5.
Ulrich, R., and Rajan, S., 1996, “Temperature Profiles for MCM-D Flip-Chip Assemblies at Cryogenic Conditions,” Twelfth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Austin, Texas, 5–7 Mar., pp. 30–35.
6.
Touloukian et al., eds., 1975 and 1977, Thermophysical Properties of Matter, Vols. 12 and 13, “Thermal Expansion.”
7.
Tong
,
H.-M.
,
Yeh
,
H. L.
,
Goldblatt
,
R. D.
,
Srivastava
,
K. K.
,
Coffin
,
J. T.
,
Rosenberg
,
W. D.
, and
Jaspal
,
J. S.
,
1989
, “
Ceramic Packages for Liquid-Nitrogen Operation
,”
IEEE Trans. Electron Devices
,
36
, No.
8
, pp.
1521
1526
.
8.
Fujiwara
,
K.
,
Asahi
,
M.
,
Tsurumi
,
S.
, and
Takeuchi
,
Y.
,
1987
, “
Water-Soluble Flux for Pb-Alloy Josephson Device Packaging
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
CHMT-10
, No.
2
, pp.
258
262
.
9.
Ting
,
C. Y.
,
Grebe
,
K.
, and
Waldman
,
D.
,
1982
, “
Controlled Collapse Reflow for Josephson Chip Bonding
,”
J. Electrochem. Soc.
,
129
, No.
4
, pp.
859
864
.
10.
Chen, C.-L., Johnson, R. W., Jaeger, R. C., Cornelius, M. B., and Foster, W. A., 1990, “Multichip Thin-Film Technology for Low Temperature Packaging,” Proc—40th Electronic Components and Technology Conference, Las Vegas, Nevada, 20–23 May, 1, pp. 571–579.
11.
Lee
,
C. C.
,
Wang
,
C. Y.
, and
Matijasevic
,
G. S.
,
1991
, “
A New Bonding Technology Using Gold and Tin Multilayer Composite Structures
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
14
, No.
2
, pp.
407
411
.
12.
Matijasevic
,
G. S.
, and
Lee
,
C. C.
,
1989
, “
Void-Free Au-Sn Eutectic Bonding of GaAs Dice and Its Characterization Using Scanning Acoustic Microscopy
,”
J. Electron. Mater.
,
18
, No.
2
, pp.
327
337
.
13.
Aoki
,
S.
,
Imanaka
,
Y.
,
Yokouchi
,
K.
, and
Kamehara
,
N.
,
1992
, “
Multilayer Ceramic Substrate for HEMT Packaging (Liquid Nitrogen Packaging for GaAs Devices)
,”
Int. J. Microcircuits Electron. Packag.
,
15
, No.
3
, pp.
160
170
.
14.
Aoki
,
S.
,
Imanaka
,
Y.
, and
Yokouchi
,
K.
,
1992
, “
Multilayer Ceramic Substrate for HEMT Packaging (Liquid Nitrogen Packaging for GaAs Devices)
,”
Fujitsu Sci. Tech. J.
,
28
, No.
3
, pp.
321
328
.
You do not currently have access to this content.