Fracture mechanics is applied to flip-chip BGA design to avert die cracking from its backside. Fracture mechanics is integrated with the finite element analysis (FEA) and design of virtual experiments (virtual DOE) to analyze the effects of location and length of a die crack, and the effects of some key material properties and package dimensions on die cracking of flip-chip BGA. The stress intensity factor (SIF) and the strain energy release rate (ERR) are taken as the design indices. The FEA is used to calculate the fracture parameters, and the virtual DOE is employed to determine contributions of each design parameter to die cracking and their acceptable design windows. The investigation consists of two parts. The first is relations of length and location of a die crack with the fracture parameters. The relations are established through sweeping along crack length for a crack located at the center of the die backside, and along the die backside surface. The critical crack length is determined for a specific design. The second is the virtual DOE based on fracture mechanics. Several key material properties and package dimensions are used as the design inputs. The main effects and interactions of these design parameters to die cracking are calculated. Based on it, some generic design guidelines are made. It is concluded that substrate and die thicknesses are the two most significant factors to die cracking of flip-chip BGA. Increasing substrate thickness and reducing die thickness are the most effective measures to design a package with high resistance to die cracking.

1.
Mathieu
,
B.
, and
Dasgupta
,
A.
,
1994
, “
A Fractional-Factorial Numerical Technique for Stress Analysis of Glass-to-Metal Lead Seals
,”
ASME J. Electron. Packag.
,
116
, pp.
98
104
.
2.
Jih
,
E.
, and
Pao
,
Y.-H.
,
1995
, “
Evaluation of Design Parameters for Leadless Chip Resistors Solder Joints
,”
ASME J. Electron. Packag.
,
117
, pp.
94
117
.
3.
Mertol
,
A.
,
1995
, “
Application of the Taguchi Method on the Robust Design of Molded 225 Plastic Ball Grid Array Packages
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
,
18
, pp.
734
743
.
4.
Mertol
,
A.
,
1997
, “
Optimization of High Pin Count Cavity-up Enhanced Plastic Ball Grid Array (EPBGA) Packages for Robust Design
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
,
20
, pp.
376
388
.
5.
Yeh
,
C.-P.
,
Zhou
,
W. X.
, and
Wyatt
,
K.
,
1996
, “
Parametric Finite Element Analysis of Flip Chip Reliability
,”
Int. J. Microcircuits Electron. Packag.
,
19
, pp.
120
127
.
6.
Villani
,
A.
, and
Hsu
,
S. C.
,
1996
, “
Reliablity of Low Cost Copper Heat Spreader Pin Grid Array Ceramic Packages
,”
Int. J. Microcircuits Electron. Packag.
,
19
, pp.
138
145
.
7.
Pecht
,
M. G.
,
1998
, “
Virtual Product Development
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
21
, p.
610
610
.
8.
Lindell
,
M.
,
Stoaks
,
P.
,
Carey
,
D.
, and
Sandborn
,
P.
,
1998
, “
The Role of Physical Implementation in Virtual Prototyping of Electronic Systems
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
,
21
, pp.
611
616
.
9.
Evans, T. C., 1999, “Future Packaging Reliability Test,” HDP/MCM-1999 Proceedings, Denver, Colorado, pp. 389–394.
10.
Chin
,
S.-W.
,
Rajan
,
S. D.
,
Nagaraj
,
B. K.
, and
Mahalingam
,
M.
,
1994
, “
Automated Design Tool for Examining Microelectronic Packaging Design Alternatives
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
,
17
, pp.
76
82
.
11.
Broek, D., 1982, Elementary Engineering Fracture Mechanics, Martinus Nijhoff, Boston.
12.
Van Vroonhoven
,
J. C. W.
,
1993
, “
Effects of Adhesion and Delamination on Stress Singularities in Plastic-Packaged Integrated Circuits
,”
ASME J. Electron. Packag.
,
115
, pp.
28
33
.
13.
Hu
,
K. X.
,
Yeh
,
C. P.
,
Wu
,
X. S.
, and
Wyatt
,
K.
,
1996
, “
An Interfacial Delamination Analysis for Multichip Module Thin Film Interconnects
,”
ASME J. Electron. Packag.
,
118
,
206
213
.
14.
Sato
,
M.
,
Yoshioka
,
S.
,
Inoue
,
A.
,
Tani
,
S.
, and
Iwaoka
,
M.
,
1997
, “
Analysis of Delamination Arrest Effect of Dimples on Interface in LSI Package
,”
JSME Int. J., Ser. A
,
40
, pp.
58
64
.
15.
Fan, X. J., Teo, Y. C., Teo, P. S., and Lim, T. B., 1998, “Die Cracking Analysis in Flip Chip PBGA,” Proceedings of the Third International Symposium on Electronic Packaging Technology, Beijing, China, pp. 458–463.
16.
Liu
,
X. K.
,
Suo
,
Z.
, and
Ma
,
Q.
,
1999
, “
Split Singularities: Stress Field Near the Edge of a Silicon Die on a Polymer Substrate
,”
Acta Mater.
,
47
, pp.
67
76
.
17.
Liu
,
X. K.
,
Suo
,
Z.
,
Ma
,
Q.
, and
Fujimoto
,
H.
,
2000
, “
Developing Design Rules to Avert Cracking and Debonding in Integrated Circuit Structures
,”
Eng. Fract. Mech.
,
66
, pp.
387
402
.
18.
Wang
,
J.
,
Qian
,
Z.
, and
Liu
,
S.
,
1998
, “
Process Induced Stresses of a Flip-Chip Packaging by Sequential Processing Modeling Technique
,”
ASME J. Electron. Packag.
,
120
, pp.
309
313
.
19.
Owen, D. R. J., and Fawkes, A. J., 1983, Engineering Fracture Mechanics: Numerical Methods and Applications, Pineridge Press, Swansea, UK.
20.
Lee, T. W., and Pabbisetty, S. V., eds., 1993, Microelectornic Failure Analysis: Desk Reference, 3rd Ed., ASM International (The Material Information Society), Materials Part, OH, p. 366.
You do not currently have access to this content.