An approximate analytical solution for the thermal resistance of the axisymmetric chip-on-substrate problem is presented for a substrate with a direction dependent (orthotropic) thermal conductivity. The substrate may be convectively cooled on either, or both, of its planar surfaces. The solution reveals substrate geometries with low maximum substrate temperatures. These optimal substrate sizes are mapped for Biot numbers typical of microelectronic applications. The effects of varying the radial and axial substrate conductivities are investigated. In general, radial conductivity enhancement is beneficial for bottom-side and both-side convective cooling of thin substrates, and for top-side cooling of all substrates. For thin substrates, radial conductivity enhancement provides comparable thermal performance to an equivalent isotropic conductivity enhancement. For electronic packaging applications thin substrates are desirable and radial conductivity enhancement is more beneficial than axial conductivity enhancement.

1.
Behrens
E.
,
1968
, “
Thermal Conductivities of Composite Materials
,”
Journal of Composite Materials
, Vol.
2
, pp.
2
17
.
2.
Bigg
D. M.
,
1986
, “
Thermally Conductive Polymer Compositions
,”
Polymer Composites
, Vol.
7
, No.
3
, pp.
125
140
.
3.
Chang
Y. P.
, and
Tsou
R. C. H.
,
1977
, “
Heat Conduction in an Anisotropic Medium Homogenous in Cylindrical Regions—Unsteady State
,”
ASME Journal of Heat Transfer
, Vol.
41
, pp.
41
46
.
4.
Chawla, K. K., 1987, Composite Materials, Springer-Verlag, New York, NY.
5.
Dasgupta
A.
, and
Agarwal
R. K.
,
1992
, “
Orthotropic Thermal Conductivity of Plain-Weave Fabric Composites Using a Homogenization Technique
,”
Journal of Composite Materials
, Vol.
26
, No.
18
, pp.
2736
2758
.
6.
Fisher
T. S.
,
Zell
F. A.
,
Sikka
K. K.
, and
Torrance
K. E.
,
1996
, “
Efficient Heat Transfer Approximation to the Heat Source-on-Substrate Problem
,”
ASME JOURNAL OF ELECTRONIC PACKAGING
, Vol.
118
, No.
4
, pp.
271
279
.
7.
Fleming, T. F., 1995, High Thermal Conductivity Pitch Based Graphite Fibers, Product Information Literature, Amoco Performance Products, Inc., Georgia.
8.
Han
L. S.
, and
Cosner
A. A.
,
1981
, “
Effective Thermal Conductivities of Fibrous Composites
,”
ASME Journal of Heat Transfer
, Vol.
103
, pp.
387
392
.
9.
Hasselman
D. P. H.
,
Donaldson
K. Y.
, and
Thomas
J. R.
,
1992
, “
Effective Thermal Conductivity of Uniaxial Composite with Cylindrically Orthotropic Carbon Fibers and Interfacial Thermal Barrier
,”
Journal of Composite Materials
, Vol.
27
, No.
16
, pp.
637
644
.
10.
Havis
C. R.
,
Peterson
G. P.
,
Fletcher
L. S.
,
1989
, “
Predicting the Thermal Conductivity and Temperature Distribution in Aligned Fiber Composites
,”
Journal of Thermophysics
, Vol.
3
, No.
4
, pp.
416
422
.
11.
Hingorani
S. K.
,
Fahrner
C. J.
,
Mackowski
D. W.
,
Goodling
J. S.
, and
Jaeger
R. C.
,
1994
, “
Optimal Sizing of Planar Thermal Spreaders
,”
ASME Journal of Heat Transfer
, Vol.
116
, No.
2
, pp.
296
301
.
12.
James
B. W.
, and
Harrison
P.
,
1992
, “
Analysis of the Temperature Distribution, Heat Flow and Effective Conductivity of Homogenous Composite Materials with Anisotropic Thermal Conductivity
,”
Journal of Applied Physics D
, Vol.
25
, pp.
1298
1303
.
13.
Kadambi
V.
, and
Abuaf
N.
,
1985
, “
An Analysis of the Thermal Response of Power Chip Packages
,”
IEEE Transactions on Electron Devices
, Vol.
ED-32
, No.
6
, pp.
1024
1033
.
14.
Kennedy
D. P.
,
1960
, “
Spreading Resistance in Cylindrical Semiconductor Devices
,”
Journal of Applied Physics
, Vol.
31
, No.
8
, pp.
1490
1497
.
15.
McWhorter, J. C., and Sadd, M. H., 1979, “Numerical Anisotropic Heat Conduction Solutions Using Boundary-Fitted Coordinate Systems,” ASME Paper No. 79-WA/HT-42, ASME, New York, NY.
16.
Nelson, D. J., and Sayers, W. A., 1992, “A Comparison of Two-Dimensional Planar and Three-Dimensional Spreading Resistances,” Proceedings of the Eight Annual IEEE Semiconductor Thermal Measurement and Management Symposium [SEMI-THERM 1992], IEEE, Hoboken, NJ, pp. 62–68.
17.
Nielsen
L. E.
,
1973
, “
Thermal Conductivity of Particulate-Filled Polymers
,”
Journal of Applied Polymer Science
, Vol.
17
, p.
3819
3819
.
18.
Ozisik, M. N., 1980, Heat Conduction, John Wiley and Sons, New York, NY.
19.
Poon
K. C.
, and
Chang
Y. P.
,
1978
, “
Transformation of Heat Conduction Problems from Anisotropic to Isotropic
,”
Letters in Heat and Mass Transfer
, Vol.
5
, pp.
215
221
.
20.
Procter
P.
, and
Solc
J.
,
1991
, “
Improved Thermal Conductivity in Microelectronic Encapsulants
,”
IEEE Transactions on Components, Hybrids, and Manufacturing Technology
, Vol.
14
, No.
4
, pp.
708
713
.
21.
Schneider, G. E., and Romilly, D., 1979, “The Apparent Thermal Conductivity of Long Cylindrical Fibers in a Matrix,” ASME Paper No. 79-WA/HT-42, ASME, New York, NY.
22.
Springer
G. S.
, and
Tsai
S. W.
,
1967
, “
Thermal Conductivities of Unidirectional Composites
,”
Journal of Composite Materials
, Vol.
1
, pp.
166
173
.
This content is only available via PDF.
You do not currently have access to this content.