Thin film metallizations are one of the most important interconnects in large-scale integrated circuits. They are covered by substrates and passivation films. Large hydrostatic (mean) tension develops due to the constraint and thermal mismatch, and voiding is identified as the failure mechanism. This phenomenon of rapid nucleation and growth of voids is called cavitation instability and it can lead to the failure of ductile components in electronic packages such as metallizations. A micromechanics model is developed to provide the critical mean stress level that will trigger the cavitation instability. It is found that this critical mean stress level the cavitation stress, not only depends on the material properties but also is very sensitive to defects in the material. For example, the cavitation stress decreases drastically as the void volume fraction increases. The stress-based design criterion for ductile components in electronic packages should then be: (1) Von Mises effective stress < yield stress; and (2) mean stress < cavitation stress, which is particularly important to the constrained ductile components in electronic packages such as vias and conductive adhesives. An analytical expression of cavitation stress for elastic-perfectly plastic solids is obtained, and numerical results for elastic-power law hardening solids are presented.

1.
Argon
A. S.
, and
Im
J.
,
1975
, “
Separation of Second Phase Particles in Spheroidized 1045 Steel, Cu-0.6Pct Cr Alloy, and Maraging Steel in Plastic Straining
,”
Metallurgica Transactions
, Vol.
6A
, p.
839
839
.
2.
Argon
A. S.
,
Im
J.
, and
Safoglu
R.
,
1975
, “
Cavity Formation from Inclusions in Ductile Fracture
,”
Metallurgica Transactions
, Vol.
6A
, p.
825
825
.
3.
Ashby
M. F.
,
Blunt
F. J.
, and
Bannister
M.
,
1989
, “
Flow Characteristics of Highly Constrained Metal Wires
,”
Acta Metallurgica et Materiallia
, Vol.
37
, p.
1857
1857
.
4.
Borgesen, P., Korhonen, M. A., Brown, D. D., and Li, C.-Y., 1992 Stress-Induced Phenomenon in Metallizations, Li, C.-Y., Totta, P., and Ho, P., eds., AIP Conference Proceedings 263, AIP, New York, p. 219.
5.
Boucier
R. J.
,
Koss
D. A.
,
Smelser
R. E.
, and
Richmond
O.
,
1986
, “
The Influence of Porosity on the Deformation and Fracture of Alloys
,”
Acta Metallurgica et Materialia
, Vol.
34
, p.
2443
2443
.
6.
Budiansky, B., Hutchinson, J. W., and Slutsky, S., 1982, “Void Growth and Collapse in Viscous Solids,” Mechanics of Materials, The Rodney Hill 60th Anniversary Volume, Hopkins, H. G. and Sewell, M. J., eds., Permagon Press, Oxford, p. 13.
7.
Curry J. G., Fitzgibbon, G., Guan, Y., Muollo, R., Nelson, G., and Thomas, A., 1984, “New Failure Mechanisms in Sputtered Aluminum-Silicon Films,” Proceedings of 1984 IEEE International Reliability Physics Symposium, IEEE, New York, p. 6.
8.
Flinn
P. A.
, and
Chiang
C.
,
1990
, “
X-Ray Diffraction Determination of the Effect of Various Passivations on Stress in Metal Films and Patterned Lines
,”
Journal of Applied Physics
, Vol.
67
, p.
2927
2927
.
9.
Golwalkar, S. V., 1993, “Solutions to Moisture Resistance Degradation During Solder Reflow of Plastic Surface Mount Components,” Thermal Stress and Strain in Microelectronics Packaging, Lau, J. H., ed., Van Nostrand Reinhold, New York, p. 445.
10.
Guo, Q., Keer, L. M., and Chung Y.-W., 1993, “Thermal Stress-Induced Open-Circuit Failure in Microelectronics Thin-Film Metallizations,” Thermal Stress and Strain in Microelectronics Packaging, J. H., Lau, ed., Van Nostrand Reinhold, New York, p. 329.
11.
Huang
Y.
,
1991
, “
Accurate Dilation Rates for Spherical Voids in Triaxial Stress Fields
,”
ASME Journal of Applied Mechanics
, Vol.
58
, p.
1084
1084
.
12.
Huang
Y.
,
1993
, “
The Role of Nonuniform Particle Distribution in Plastic Flow Localization
,”
Mechanics of Materials
, Vol.
16
, p.
265
265
.
13.
Huang
Y.
,
Hutchinson
J. W.
, and
Tvergaard
V.
,
1991
, “
Cavitation Instabilities in ElasticPlastic Solids
,”
Journal of the Mechanics and Physics of Solids
, Vol.
39
, p.
223
223
.
14.
Jiang, Z. Q., Huang, Y., and Chandra, A., 1996, “Thermal Stresses in Layered Electronic Assemblies,” ASME JOURNAL OF ELECTRONIC PACKAGING, in press.
15.
Jones, Jr., R. E., 1987, “Line Width Dependence of Stresses in Aluminum Interconnect,” Proceedings of 1987 IEEE International Reliability Physics Symposium, IEEE, New York, p. 9.
16.
Jones
R. E.
, and
Basehore
M. L.
,
1987
, “
Stress Analysis of Encapsulated Fine-Line Aluminum Interconnect
,”
Applied Physics Letters
, Vol.
50
, p.
725
725
.
17.
Korhonen
M. A.
,
Black
R. D.
, and
Li
C.-Y.
,
1991
, “
Stress Relaxation of Passivated Aluminum Line Metallizations on Silicon Substrates
,”
Journal of Applied Physics
, Vol.
69
, p.
1748
1754
.
18.
Korhonen, M. A., Borgesen, P., and Li, C.-Y., 1992, Thin Films: Stresses and Mechanical Properties III, MRS Symposium Proceedings, Pittsburgh, pp. 239–245.
19.
Korhonen, M. A., Borgesen, P., and Li, C.-Y., 1993, “Thermal Stress and Stress-Induced Voiding in Passivated Narrow Line Metallizations on Ceramic Substrates,” Thermal Stress and Strain in Microelectronics Packaging, Lau, J. H., ed., Van Nostrand Reinhold, New York, p. 360.
20.
Korhonen
M. A.
,
Paszkiet
C. A.
,
Black
R. D.
, and
Li
C.-Y.
,
1990
, “
Stress Relaxation of Continuous Film and Narrow Line Metallizations of Aluminum on Silicon Substrates
,”
Scripta Metallurgica et Materialia
, Vol.
24
, p.
2297
2297
.
21.
Li
C.-Y.
,
Borgesen
P.
, and
Sullivan
T. D.
,
1991
, “
Stress-Migration Related Electromigration Damage Mechanism in Passivated, Narrow Interconnects
,”
Applied Physics Letters
, Vol.
59
, p.
1464
1464
.
22.
Mermet-Guyennet, M., 1993, “Thermal and Moisture Stresses in Plastic Packages,” Thermal Stress and Strain in Microelectronics Packaging, Lau, J. H., ed., Van Nostrand Reinhold, New York, p. 410.
23.
Niwa
H.
,
Yagi
H.
,
Tsuchikawa
H.
, and
Kato
M.
,
1990
, “
Stress Distribution in an Aluminum Interconnect of Very Large Scale Integration
,”
Journal of Applied Physics
, Vol.
68
, p.
328
328
.
24.
Post
D.
,
Wood
J. D.
,
Han
B.
,
Parks
V. J.
, and
Gerstle
F. P.
,
1994
, “
Thermal Stresses in a Bimaterial Joint: An Experimental Analysis
,”
ASME Journal of Applied Mechanics
, Vol.
61
, p.
192
192
.
25.
Rice
J. R.
, and
Tracey
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
Journal of the Mechanics and Physics of Solids
, Vol.
17
, p.
201
201
.
26.
Spitzig
W. A.
,
Smelser
R. E.
,
Richmond
O.
,
1988
, “
The Evolution of Damage and Fracture in Iron Compacts with Various Initial Porosities
,”
Acta Metallurgica et Materialia
, Vol.
36
, p.
1201
1201
.
27.
Tvergaard
V.
,
Huang
Y.
, and
Hutchinson
J. W.
,
1992
, “
Cavitation Instabilities in a Power Hardening Elastic-Plastic Solid
,”
European Journal of Mechanics, A/Solids
, Vol.
11
, p.
215
215
.
28.
Tvergaard
V.
, and
Hutchinson
J. W.
,
1993
, “
Effect of Initial Void Shape on the Occurence of Cavitation Instabilities in Elastic-Plastic Solids
,”
ASME Journal of Applied Mechanics
, Vol.
60
, p.
807
807
.
29.
Van Der Giessen
E.
,
Van Der Burg
M. W. D.
,
Needleman
A.
, and
Tvergaard
V.
,
1995
, “
Void Growth due to Creep and Grain Boundary Diffusion at High Triaxialities
,”
Journal of the Mechanics and Physics of Solids
, Vol.
43
, p.
123
123
.
30.
Varias
A. G.
,
Suo
Z.
, and
Shih
C. F.
,
1991
, “
Ductile Failure of a Constrained Metal Foil
,”
Journal of the Mechanics and Physics of Solids
, Vol.
39
, p.
963
963
.
This content is only available via PDF.
You do not currently have access to this content.