Onset of transition is investigated in the flow over an array of protruding elements mounted on the bottom wall of a rectangular water channel simulating flow passages between adjacent circuit boards in computers. The element dimensions are held constant while the channel height and the element spacing are varied. Flow visualization and turbulence measurements are used to determine transition Reynolds numbers, which compare well with previous results obtained from heat transfer data. The complicated, three-dimensional flow field causes transition to be a function not only of flow rate and array geometry but also of location in the array. Transition occurs in the fully developed region of the array at a channel height-based Reynolds number of 700 for a channel height of 1.2 element heights, increasing to 1900 for a channel height of 3.6 element heights. However, when Reynolds number is defined based on element height, transition occurs at the same Reynolds number of 550 for all channel heights. Increasing the stream wise spacing between elements causes transition to occur at lower Reynolds numbers.

This content is only available via PDF.
You do not currently have access to this content.