An experimental investigation of steady state and transient natural convection from a column of eight in-line rectangular heated protrusions in a vertical channel in water is presented. Flow visualizations and element surface temperature measurements were carried out for several power dissipation levels in the range of 0.2–1.5 W per component and channel spacings from 6.4 to 23 mm. The three-dimensional steady flows were visualized in two mutually perpendicular planes. Average component temperatures determined from the measurements on the five fluid exposed faces were used to obtain nondimensional heat transfer rates. Heat transfer data for all channel spacings except the smallest did not differ from the measurements for an isolated surface by more than 14 percent. For the smallest spacing, the component surface temperatures increased significantly due to a reduction in the fluid velocities. Measurements and flow visualizations during the transient indicated an initial diffusive transport period, followed by the evolution of convective effects. No overshoots in component temperatures were found. Steady transport responses with selectively powered components are also examined.

This content is only available via PDF.
You do not currently have access to this content.