Abstract

The three-dimensional (3D) multiporous structure polyimides were obtained by introducing of the triphenylamine (TPA) unit as linkage in the pyromellitic-based polyimide (N1) and the naphthalene-1,4,5,8-tetracarboxylic-based polyimides (N2), respectively. Then, the functional polyimides were explored as the anode of lithium ion batteries instead of as traditional cathode. As a result, the obtained triphenylamine-based polyimides exhibited a good reversible capacity and remarkably improved rate performance. Especially for the porous N1, it delivered a gradually increased capacity of up to 349 mAh/g during the cycle testing and a rate capacity of 400 mAh/g at an even high current density of 500 mA/g. Significant electrochemical performances for the triphenylamine-contained polyimide could be ascribed to the unique polyimide chemical structure and the constructed 3D multiporous structure with the high surface area (738 m2/g for N1 and 456 m2/g for N2), which benefited to excellent Li+ diffusion kinetics in porous electrode. This makes it promising as anode of rechargeable batteries with the remarkably electrochemical performances.

References

References
1.
Han
,
X.
,
Qing
,
G.
,
Sun
,
J.
, and
Sun
,
T.
,
2012
, “
How Many Lithium Ions Can Be Inserted Onto Fused C6 Aromatic Ring Systems?
,”
Angew. Chem. Int. Ed.
,
51
(
21
), pp.
5147
5515
. 10.1002/anie.201109187
2.
Lee
,
M.
,
Hong
,
J.
,
Seo
,
D. H.
,
Nam
,
D. H.
,
Nam
,
K. T.
,
Kang
,
K.
, and
Park
,
C. B.
,
2013
, “
Redox Cofactor From Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound
,”
Angew. Chem. Int. Ed.
,
52
(
32
), pp.
8322
8328
. 10.1002/anie.201301850
3.
Muench
,
S.
,
Wild
,
A.
,
Friebe
,
C.
,
Häupler
,
B.
,
Janoschka
,
T.
, and
Schubert
,
U. S.
,
2016
, “
Polymer-Based Organic Batteries
,”
Chem. Rev.
,
116
(
16
), pp.
9438
9484
. 10.1021/acs.chemrev.6b00070
4.
Speer
,
M. E.
,
Kolek
,
M.
,
Jassoy
,
J. J.
,
Heine
,
J.
,
Winter
,
M.
,
Bieker
,
P. M.
, and
Esser
,
B.
,
2015
, “
Thianthrene-Functionalized Polynorbornenes as High-Voltage Materials for Organic Cathode-Based Dual-Ion Batteries
,”
Chem. Commun.
,
51
(
83
), pp.
15261
15264
. 10.1039/C5CC04932F
5.
Zhang
,
J. Y.
,
Song
,
Z. P.
,
Zhan
,
L. Z.
,
Tang
,
J.
,
Zhan
,
H.
,
Zhou
,
Y. H.
, and
Zhan
,
C. M.
,
2009
, “
Poly(Ethene-1,1,2,2-Tetrathiol): Novel Cathode Material With High Specific Capacity for Rechargeable Lithium Batteries
,”
J. Power Sources
,
186
(
2
), pp.
496
499
. 10.1016/j.jpowsour.2008.10.023
6.
Suga
,
T.
,
Konishi
,
H.
, and
Nishide
,
H.
,
2007
, “
Photocrosslinked Nitroxide Polymer Cathode-Active Materials for Application in an Organic-Based Paper Battery
,”
Chem. Commun.
, (
17
), pp.
1730
1732
. 10.1039/b618710b
7.
Oyaizu
,
K.
,
Suga
,
T.
,
Yoshimura
,
K.
, and
Nishide
,
H.
,
2008
, “
Characterization of Radical-Bearing Polyethers as an Electrode-Active Material for Organic Secondary Batteries
,”
Macromolecules
,
41
(
18
), pp.
6646
6652
. 10.1021/ma702576z
8.
Choi
,
W.
,
Ohtani
,
S.
,
Oyaizu
,
K.
,
Nishide
,
H.
, and
Geckeler
,
K. E.
,
2011
, “
Radical Polymer-Wrapped SWNTs at a Molecular Level: High-Rate Redox Mediation Through a Percolation Network for a Transparent Charge-Storage Material
,”
Adv. Mater.
,
23
(
38
), pp.
4440
4443
. 10.1002/adma.201102372
9.
Zeng
,
H.
,
Li
,
X. P.
,
Qiu
,
Y. C.
,
Li
,
W. S.
,
Yi
,
J.
,
Lu
,
D. S.
,
Tan
,
C. L.
, and
Xu
,
M. Q.
,
2010
, “
Synthesis and Properties of a Lithium-Organic Coordination Compound as Lithium-Inserted Material for Lithium Ion Batteries
,”
Electrochem. Commun.
,
12
(
9
), pp.
1253
1256
. 10.1016/j.elecom.2010.06.033
10.
Amin
,
K.
,
Meng
,
Q.
,
Ahmad
,
A.
,
Cheng
,
M.
,
Zhang
,
M.
,
Mao
,
L.
,
Lu
,
K.
, and
Wei
,
Z.
,
2018
, “
A Carbonyl Compound-Based Flexible Cathode With Superior Rate Performance and Cyclic Stability for Flexible Lithium-Ion Batteries
,”
Adv. Mater.
,
30
(
4
), p.
1703868
. 10.1002/adma.201703868
11.
Gospodinova
,
N.
, and
Terlemezyan
,
L.
,
1998
, “
Conducting Polymers Pre-Pared by Oxidative Polymerization: Polyaniline
,”
Prog. Polym. Sci.
,
23
(
8
), pp.
1443
1484
. 10.1016/S0079-6700(98)00008-2
12.
Zhou
,
M.
,
Qian
,
J.
,
Ai
,
X.
, and
Yang
,
H.
,
2011
, “
Redox-Active Fe(CN)64−-Doped Conducting Polymers With Greatly Enhanced Capacity as Cathode Materials for Li-Ion Batteries
,”
Adv. Mater.
,
23
(
42
), pp.
4913
4917
. 10.1002/adma.201102867
13.
Song
,
Z.
,
Zhan
,
H.
, and
Zhou
,
Y.
,
2010
, “
Polyimides: Promising Energy-Storage Materials
,”
Angew. Chem.
,
122
(
45
), pp.
8622
8626
. 10.1002/ange.201002439
14.
Wu
,
H.
,
Meng
,
Q.
,
Yang
,
Q.
,
Zhang
,
M.
,
Lu
,
K.
, and
Wei
,
Z.
,
2015
, “
Large-Area Polyimide/SWCNT Nanocable Cathode for Flexible Lithium-Ion Batteries
,”
Adv. Mater.
,
27
(
41
), pp.
6504
6510
. 10.1002/adma.201502241
15.
Song
,
Z.
,
Xu
,
T.
,
Gordin
,
M. L.
,
Jiang
,
Y. B.
,
Bae
,
I. T.
,
Xiao
,
Q.
,
Zhan
,
H.
,
Liu
,
J.
, and
Wang
,
D.
,
2012
, “
Polymer-Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries
,”
Nano Lett.
,
12
(
5
), pp.
2205
2211
. 10.1021/nl2039666
16.
Han
,
X.
,
Chang
,
C.
,
Yuan
,
L.
,
Sun
,
T.
, and
Sun
,
J.
,
2007
, “
Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials
,”
Adv. Mater
,
19
(
12
), pp.
1616
1621
. 10.1002/adma.200602584
17.
Song
,
Z.
,
Zhan
,
H.
, and
Zhou
,
Y.
,
2010
, “
Polyimides: Promising Energy-Storage Materials
,”
Angew. Chem. Int. Ed.
,
49
(
45
), pp.
8444
8448
. 10.1002/anie.201002439
18.
Chen
,
C. Y.
,
Zhao
,
X.
,
Li
,
H. B.
,
Gan
,
F.
,
Zhang
,
J. X.
,
Dong
,
J.
, and
Zhang
,
Q. H.
,
2017
, “
Naphthalene-Based Polyimide Derivatives as Organic Electrode Materials for Lithium-Ion Batteries
,”
Electrochim. Acta
,
229
, pp.
387
395
. 10.1016/j.electacta.2017.01.172
19.
Hernandez
,
G.
,
Salsamendi
,
M.
,
Morozova
,
S. M.
,
Lozinskaya
,
E. I.
,
Devaraj
,
S.
,
Vygodskii
,
Y. S.
, and
Shaplov
,
A. S.
,
2018
, “
David Mecerreyes Polyimides as Cathodic Materials in Lithium Batteries: Effect of the Chemical Structure of the Diamine Monomer
,”
J. Polym. Sci. Polym. Chem.
,
56
(
7
), pp.
714
723
. 10.1002/pola.28937
20.
Tyler
,
B. S.
,
Andrew
,
J. T.
,
Emily
,
L. K.
, and
Dwight
,
S. S.
,
2017
, “
Three-Dimensional Arylene Diimide Frameworks for Highly Stable Lithiumion Batteries
,”
ACS Appl. Mater. Inter.
,
9
(
18
), pp.
15631
15637
. 10.1021/acsami.7b02336
21.
Kim
,
D. J.
,
Hermann
,
K. R.
,
Prokofjevs
,
A.
,
Otley
,
M. T.
,
Pezzato
,
C.
,
Owczarek
,
M.
, and
Stoddart
,
J. F.
,
2017
, “
Redox-Active Macrocycles for Organic Rechargeable Batteries
,”
J. Am. Chem. Soc.
,
139
(
19
), pp.
6635
6643
. 10.1021/jacs.7b01209
22.
Lyu
,
H.
,
Liu
,
J.
,
Mahurin
,
S.
,
Dai
,
S.
,
Guo
,
Z.
, and
Sun
,
X. G.
,
2017
, “
Polythiophene Coated Aromatic Polyimide Enabled Ultrafast and Sustainable Lithium Ion Batteries
,”
J. Mater. Chem. A.
,
5
(
46
), pp.
24083
24090
. 10.1039/C7TA07893E
23.
Banda
,
H.
,
Damien
,
D.
,
Nagarajan
,
K.
,
Raj
,
A.
,
Hariharan
,
M.
, and
Shaijumon
,
M. M.
,
2017
, “
Twisted Perylene Diimides With Tunable Redox Properties for Organic Sodium-Ion Batteries
,”
Adv. Energy Mater.
,
7
(
20
), p.
1701316
. 10.1002/aenm.201701316
24.
Luo
,
Z. Q.
,
Liu
,
L. J.
,
Ning
,
J. X.
,
Lei
,
K. X.
,
Lu
,
Y.
,
Li
,
F. J.
, and
Chen
,
J.
,
2018
, “
A Microporous Covalent-Organic Framework With Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries
,”
Angew. Chem. Int. Ed.
,
57
(
30
), pp.
9443
9446
. 10.1002/anie.201805540
25.
Sakaushi
,
K.
,
Hosono
,
E.
,
Nickerl
,
G.
,
Gemming
,
T.
,
Zhou
,
H.
,
Kaskel
,
S.
, and
Eckert
,
J.
,
2013
, “
Aromatic Porous-Honeycomb Electrodes for a Sodium-Organic Energy Storage Device
,”
Nat. Commun.
,
4
(
1
), p.
1485
. 10.1038/ncomms2481
26.
Zhang
,
C.
,
Yang
,
X.
,
Ren
,
W.
,
Wang
,
Y.
,
Su
,
F.
, and
Jiang
,
J. X.
,
2016
, “
Microporous Organic Polymer-Based Lithium Ion Batteries With Improved Rate Performance and Energy Density
,”
J. Power Sources
,
317
, pp.
49
56
. 10.1016/j.jpowsour.2016.03.080
27.
Xu
,
F.
,
Chen
,
X.
,
Tang
,
Z.
,
Wu
,
D.
,
Fu
,
R.
, and
Jiang
,
D.
,
2014
, “
Redox-Active Conjugated Microporous Polymers: A New Organic Platform for Highly Efficient Energy Storage
,”
Chem. Commun.
,
50
(
37
), pp.
4788
4790
. 10.1039/C4CC01002G
28.
Peng
,
C.
,
Ning
,
G. H.
,
Su
,
J.
,
Zhong
,
G.
,
Tang
,
W.
,
Tian
,
B.
,
Su
,
C.
,
Yu
,
D.
,
Zu
,
L.
, and
Yang
,
J.
,
2017
, “
Reversible Multi-Electron Redox Chemistry of π-Conjugated N-Containing Heteroaromatic Molecule-Based Organic Cathodes
,”
Nat. Energy
,
2
(
7
), pp.
17
74
. 10.1038/nenergy.2017.74
29.
Wang
,
S.
,
Wang
,
Q.
,
Shao
,
P.
,
Han
,
Y.
,
Gao
,
X.
,
Ma
,
L.
,
Yuan
,
S.
,
Ma
,
X.
,
Zhou
,
J.
,
Feng
,
X.
, and
Wang
,
B.
,
2017
, “
Exfoliation of Covalent Organic Frameworks Into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries
,”
J. Am. Chem. Soc.
,
139
(
12
), pp.
4258
4261
. 10.1021/jacs.7b02648
30.
Fan
,
X.
,
Wang
,
F.
,
Ji
,
X.
,
Wang
,
R.
,
Gao
,
T.
,
Hou
,
S.
,
Chen
,
J.
,
Deng
,
T.
,
Li
,
X.
,
Chen
,
L.
,
Luo
,
C.
,
Wang
,
L.
, and
Wang
,
C.
,
2018
, “
Engineering Fast Ion Conduction and Selective Cation Channels for a High-Rate and High-Voltage Hybrid Aqueous Battery
,”
Angew Chem. Int. Ed.
,
57
(
24
), pp.
7146
7150
. 10.1002/anie.201803703
31.
DeBlase
,
C. R.
,
Hernández-Burgos
,
K.
,
Rotter
,
J. M.
,
Fortman
,
D. J.
,
dos S, Abreu
,
D.
,
Timm
,
R. A.
,
Diógenes
,
I. C. N.
,
Kubota
,
L. T.
,
Abruña
,
H. D.
,
Dichtel
,
W. R.
,
2015
, “
Cation-Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage
,”
Angew. Chem. Int. Ed.
,
54
(
45
), pp.
13225
13229
. 10.1002/anie.201505289
32.
Xu
,
F.
,
Jin
,
S.
,
Zhong
,
H.
,
Wu
,
D.
,
Yang
,
X.
,
Chen
,
X.
,
Wei
,
H.
,
Fu
,
R.
, and
Jiang
,
D.
,
2015
, “
Electrochemically Active, Crystalline, Mesoporous Covalent Organic Frameworks on Carbon Nanotubes for Synergistic Lithium-Ion Battery Energy Storage
,”
Sci. Rep.
,
5
(
1
), p.
8225
. 10.1038/srep08225
33.
Tian
,
D.
,
Zhang
,
H. Z.
,
Zhang
,
D. S.
,
Chang
,
Z.
,
Han
,
J.
,
Gao
,
X. P.
, and
Bu
,
X. H.
,
2014
, “
Li-Ion Storage and Gas Adsorption Properties of Porous Polyimides (PIs)
,”
RSC Adv.
,
4
(
15
), pp.
7506
7510
. 10.1039/c3ra45563g
34.
Zeigler
,
D. F.
,
Candelaria
,
S. L.
,
Mazzio
,
K. A.
,
Martin
,
T. R.
,
Uchaker
,
E.
,
Suraru
,
S. L.
,
Kang
,
L. J.
,
Cao
,
G.
, and
Luscombe
,
C. K.
,
2015
, “
N-Type Hyperbranched Polymers for Supercapacitor Cathodes With Variable Porosity and Excellent Electrochemical Stability
,”
Macromolecules
,
48
(
15
), pp.
5196
5203
. 10.1021/acs.macromol.5b01070
35.
Zhu
,
Y.
,
Cui
,
H.
,
Meng
,
X.
,
Zheng
,
J.
,
Yang
,
P.
,
Li
,
L.
,
Wang
,
Z.
,
Jia
,
S.
, and
Zhu
,
Z.
,
2016
, “
Chlorine-Induced In Situ Regulation to Synthesize Graphene Frameworks With Large Specific Area for Excellent Supercapacitor Performance
,”
ACS Appl. Mater. Interfaces
,
8
(
10
), pp.
6481
6487
. 10.1021/acsami.5b12677
36.
Zhang
,
S.
,
Huang
,
W.
,
Hu
,
P.
,
Huang
,
C.
,
Shang
,
C.
,
Zhang
,
C.
,
Yang
,
R.
, and
Cui
,
G.
,
2015
, “
Conjugated Microporous Polymers With Excellent Electrochemical Performance for Lithium and Sodium Storage
,”
J. Mater. Chem. A
,
3
(
5
), pp.
1896
1901
. 10.1039/C4TA06058J
37.
Sakaushi
,
K.
,
Hosono
,
E.
,
Nickerl
,
G.
,
Zhou
,
H.
,
Kaskel
,
S.
, and
Eckert
,
J.
,
2014
, “
Bipolar Porous Polymeric Frameworks for Low-Cost, High-Power, Long-Life All-Organic Energy Storage Devices
,”
J. Power Sources
,
245
, pp.
553
556
. 10.1016/j.jpowsour.2013.07.007
38.
Hao
,
L.
,
Ning
,
J.
,
Luo
,
B.
,
Wang
,
B.
,
Zhang
,
Y.
,
Tang
,
Z.
,
Yang
,
J.
,
Thomas
,
A.
, and
Zhi
,
L.
,
2015
, “
Structural Evolution of 2D Microporous Covalent Triazine-Based Framework Toward the Study of High-Performance Supercapacitors
,”
J. Am. Chem. Soc.
,
137
(
1
), pp.
219
225
. 10.1021/ja508693y
39.
Sun
,
Y.
,
Sun
,
Y.
,
Pan
,
Q.
,
Li
,
G.
,
Han
,
B.
,
Zeng
,
D.
,
Zhang
,
Y.
, and
Cheng
,
H.
,
2016
, “
A Hyperbranched Conjugated Schiff Base Polymer Network: A Potential Negative Electrode for Flexible Thin Film Batteries
,”
Chem. Commun.
,
52
(
14
), pp.
3000
3002
. 10.1039/C5CC09662F
40.
Wu
,
B.
,
Cui
,
F.
,
Lei
,
Y.
,
Li
,
S.
,
de Sousa Amadeu
,
N.
,
Janiak
,
C.
,
Lin
,
Y. J.
,
Weng
,
L. H.
, and
Wang
,
Y.
,
2013
, “
Tetrahedral Anion Cage: Self-Assembly of a (PO4)4L4, Complex From a Tris(Bisurea) Ligand
,”
Angew. Chem.
,
52
(
19
), pp.
5096
5100
. 10.1002/anie.201209930
41.
Fang
,
J.
,
Hidetoshi
,
A.
, and
Okamoto
,
K.
,
2000
, “
Hyperbranched Polyimides for Gas Separation Applications. 1. Synthesis and Characterization
,”
Macromolecules
,
33
(
13
), pp.
4639
4646
. 10.1021/ma9921293
42.
Wu
,
J. S.
,
Rui
,
X. H.
,
Wang
,
C. Y.
,
Pei
,
W. B.
,
Lau
,
R.
,
Yan
,
Q. Y.
, and
Zhang
,
Q. C.
,
2015
, “
Nanostructured Conjugated Ladder Polymers for Stable and Fast Lithium Storage Anodes With High-Capacity
,”
Adv. Energy Mater
,
5
(
9
), p.
1402189
. 10.1002/aenm.201402189
You do not currently have access to this content.