Abstract

The thermal runaway hazards pose a serious threat to the application and transport of lithium-ion batteries on the aircraft. Hence, the researches of thermal safety in flight condition are necessary. In this study, the tests were conducted in a dynamic pressure chamber to study the effects of ambient pressure and heating power on the thermal runaway characteristics. The results show that the fierce behaviors of jet fire, deflagration, and explosion only were observed in high ambient pressure with high heating power. The open time of the safety valve is advanced as pressure from 95 kPa to 20 kPa. The parameters of heat release rate (HRR), total heat release (THR), cell surface temperature, peak concentration of CO2, and mass loss decrease as the descend of external pressure or heating power. The peak values of hydrocarbon (CHx) and CO increase with the descent of pressure but decrease as the reduction of heating power. The effects of ambient pressure on the thermal runaway (TR) fire behaviors mainly attribute to the low oxygen density. The time of heating and smoking may account for the difference of TR behaviors with various heating power. It is revealed that the fire risk and the hazards of toxic/flammable gas emissions are tightly relative to the TR behaviors. These results provide valuable proposals and inspiration for the safety warning and hazard reduction under low pressure.

References

References
1.
Feng
,
X.
,
Sun
,
J.
,
Ouyang
,
M.
,
He
,
X.
,
Lu
,
L.
,
Han
,
X.
,
Fang
,
M.
, and
Peng
,
H.
,
2014
, “
Characterization of Large Format Lithium ion Battery Exposed to Extremely High Temperature
,”
J. Power Sources
,
272
, pp.
457
467
. 10.1016/j.jpowsour.2014.08.094
2.
Yayathi
,
S.
,
Walker
,
W.
,
Doughty
,
D.
, and
Ardebili
,
H.
,
2016
, “
Energy Distributions Exhibited During Thermal Runaway of Commercial Lithium ion Batteries Used for Human Spaceflight Applications
,”
J. Power Sources
,
329
, pp.
197
206
. 10.1016/j.jpowsour.2016.08.078
3.
Xu
,
J.
,
Wang
,
L.
,
Guan
,
J.
, and
Yin
,
S.
,
2016
, “
Coupled Effect of Strain Rate and Solvent on Dynamic Mechanical Behaviors of Separators in Lithium Ion Batteries
,”
Mater. Des.
,
95
, pp.
319
328
. 10.1016/j.matdes.2016.01.082
4.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-ion Battery Cell upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
. 10.1016/j.ensm.2019.06.036
5.
Xu
,
G.
,
Huang
,
L.
,
Lu
,
C.
,
Zhou
,
X.
, and
Cui
,
G.
,
2020
, “
Revealing the Multilevel Thermal Safety of Lithium Batteries
,”
Energy Storage Mater.
,
31
, pp.
72
86
. 10.1016/j.ensm.2020.06.004
6.
Ping
,
P.
,
Wang
,
Q.
,
Huang
,
P.
,
Li
,
K.
,
Sun
,
J.
,
Kong
,
D.
, and
Chen
,
C.
,
2015
, “
Study of the Fire Behavior of High-Energy Lithium-ion Batteries With Full-Scale Burning Test
,”
J. Power Sources
,
285
, pp.
80
89
. 10.1016/j.jpowsour.2015.03.035
7.
Wu
,
T.
,
Chen
,
H.
,
Wang
,
Q.
, and
Sun
,
J.
,
2018
, “
Comparison Analysis on the Thermal Runaway of Lithium-Ion Battery Under two Heating Modes
,”
J Hazard Mater.
,
344
, pp.
733
741
. 10.1016/j.jhazmat.2017.11.022
8.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
. 10.1016/j.jpowsour.2012.02.038
9.
Said
,
A. O.
,
Lee
,
C.
,
Stoliarov
,
S. I.
, and
Marshall
,
A. W.
,
2019
, “
Comprehensive Analysis of Dynamics and Hazards Associated With Cascading Failure in 18650 Lithium ion Cell Arrays
,”
Appl. Energy
,
248
, pp.
415
428
. 10.1016/j.apenergy.2019.04.141
10.
Larsson
,
F.
,
Bertilsson
,
S.
,
Furlani
,
M.
,
Albinsson
,
I.
, and
Mellander
,
B.-E.
,
2018
, “
Gas Explosions and Thermal Runaways During External Heating Abuse of Commercial Lithium-ion Graphite-LiCoO2 Cells at Different Levels of Ageing
,”
J. Power Sources
,
373
, pp.
220
231
. 10.1016/j.jpowsour.2017.10.085
11.
Finegan
,
D. P.
,
Vamvakeros
,
A.
,
Cao
,
L.
,
Tan
,
C.
,
Heenan
,
T. M. M.
,
Daemi
,
S. R.
,
Jacques
,
S. D. M.
,
Beale
,
A. M.
,
Di Michiel
,
M.
,
Smith
,
K.
,
Brett
,
D. J. L.
,
Shearing
,
P. R.
, and
Ban
,
C.
,
2019
, “
Spatially Resolving Lithiation in Silicon-Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography
,”
Nano Lett.
,
19
(
6
), pp.
3811
3820
. 10.1021/acs.nanolett.9b00955
12.
Li
,
W.
,
Wang
,
H.
,
Zhang
,
Y.
, and
Ouyang
,
M.
,
2019
, “
Flammability Characteristics of the Battery Vent gas: A Case of NCA and LFP Lithium-ion Batteries During External Heating Abuse
,”
J. Energy Storage
,
24
, pp.
10077
10086
. 10.1016/j.est.2019.100775
13.
Forestier
,
C.
,
Lecocq
,
A.
,
Zantman
,
A.
,
Grugeon
,
S.
,
Sannier
,
L.
,
Marlair
,
G.
, and
Laruelle
,
S.
,
2020
, “
Study of the Role of LiNi1/3Mn1/3Co1/3O2/Graphite Li-Ion Pouch Cells Confinement, Electrolyte Composition and Separator Coating on Thermal Runaway and Off-Gas Toxicity
,”
J. Electrochem. Soc.
,
167
(
9
), pp.
1947
1956
. 10.1149/1945-7111/ab829e
14.
Feng
,
X.
,
Sun
,
J.
,
Ouyang
,
M.
,
Wang
,
F.
,
He
,
X.
,
Lu
,
L.
, and
Peng
,
H.
,
2015
, “
Characterization of Penetration Induced Thermal Runaway Propagation Process Within a Large Format Lithium ion Battery Module
,”
J. Power Sources
,
275
, pp.
261
273
. 10.1016/j.jpowsour.2014.11.017
15.
Li
,
H.
,
Chen
,
H.
,
Zhong
,
G.
,
Wang
,
Y.
, and
Wang
,
Q.
,
2019
, “
Experimental Study on Thermal Runaway Risk of 18650 Lithium ion Battery Under Side-Heating Condition
,”
J. Loss Prev. Process Ind.
,
61
, pp.
122
129
. 10.1016/j.jlp.2019.06.012
16.
Chen
,
Y.
,
Liu
,
N.
,
Jie
,
Y.
,
Hu
,
F.
,
Li
,
Y.
,
Wilson
,
B. P.
,
Xi
,
Y.
,
Lai
,
Y.
, and
Yang
,
S.
,
2019
, “
Toxicity Identification and Evolution Mechanism of Thermolysis-Driven Gas Emissions From Cathodes of Spent Lithium-Ion Batteries
,”
ACS Sustainable Chem. Eng.
,
7
(
22
), pp.
18228
18235
. 10.1021/acssuschemeng.9b03739
17.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium-Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
. 10.1016/j.ensm.2017.05.013
18.
Diaz
,
F.
,
Wang
,
Y.
,
Weyhe
,
R.
, and
Friedrich
,
B.
,
2019
, “
Gas Generation Measurement and Evaluation During Mechanical Processing and Thermal Treatment of Spent Li-ion Batteries
,”
Waste Manage.
,
84
, pp.
102
111
. 10.1016/j.wasman.2018.11.029
19.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
, pp.
102
113
. 10.1016/j.jpowsour.2015.04.162
20.
Li
,
H.
,
Liu
,
B.
,
Zhou
,
D.
, and
Zhang
,
C.
,
2020
, “
Coupled Mechanical–Electrochemical–Thermal Study on the Short-Circuit Mechanism of Lithium-Ion Batteries Under Mechanical Abuse
,”
J. Electrochem. Soc.
,
167
(
12
), pp.
20501
20511
. 10.1149/1945-7111/aba96f
21.
Spinner
,
N. S.
,
Hinnant
,
K. M.
,
Mazurick
,
R.
,
Brandon
,
A.
,
Rose-Pehrsson
,
S. L.
, and
Tuttle
,
S. G.
,
2016
, “
Novel 18650 Lithium-Ion Battery Surrogate Cell Design With Anisotropic Thermophysical Properties for Studying Failure Events
,”
J. Power Sources
,
312
, pp.
1
11
. 10.1016/j.jpowsour.2016.01.107
22.
Zhu
,
J.
,
Zhang
,
X.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2016
, “
Deformation and Failure Mechanisms of 18650 Battery Cells Under Axial Compression
,”
J. Power Sources
,
336
, pp.
332
340
. 10.1016/j.jpowsour.2016.10.064
23.
Liu
,
B.
,
Yin
,
S.
, and
Xu
,
J.
,
2016
, “
Integrated Computation Model of Lithium-ion Battery Subject to Nail Penetration
,”
Appl. Energy
,
183
, pp.
278
289
. 10.1016/j.apenergy.2016.08.101
24.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Yin
,
S.
,
Yuan
,
C.
,
Hu
,
Z.
,
Wang
,
L.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Safety Issues Caused by Internal Short Circuits in Lithium-ion Batteries
,”
J. Mater. Chem. A
,
6
(
43
), pp.
21475
21484
. 10.1039/C8TA08997C
25.
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Li
,
J.
, and
He
,
X.
,
2016
, “
A 3D Thermal Runaway Propagation Model for a Large Format Lithium ion Battery Module
,”
Energy
,
115
, pp.
194
208
. 10.1016/j.energy.2016.08.094
26.
Feng
,
X.
,
He
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Wu
,
P.
,
Kulp
,
C.
, and
Prasser
,
S.
,
2015
, “
Thermal Runaway Propagation Model for Designing a Safer Battery Pack With 25 Ah LiNi Co Mn O2 Large Format Lithium ion Battery
,”
Appl. Energy
,
154
, pp.
74
91
. 10.1016/j.apenergy.2015.04.118
27.
Ouyang
,
M.
,
Feng
,
X.
,
Han
,
X.
,
Lu
,
L.
,
Li
,
Z.
, and
He
,
X.
,
2016
, “
A Dynamic Capacity Degradation Model and its Applications Considering Varying Load for a Large Format Li-ion Battery
,”
Appl. Energy
,
165
, pp.
48
59
. 10.1016/j.apenergy.2015.12.063
28.
Ribière
,
P.
,
Grugeon
,
S.
,
Morcrette
,
M.
,
Boyanov
,
S.
,
Laruelle
,
S.
, and
Marlair
,
G.
,
2012
, “
Investigation on the Fire-Induced Hazards of Li-ion Battery Cells by Fire Calorimetry
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5271
5280
. 10.1039/C1EE02218K
29.
Ma
,
B.
,
Liu
,
J.
, and
Yu
,
R.
,
2020
, “
Study on the Flammability Limits of Lithium-Ion Battery Vent Gas Under Different Initial Conditions
,”
ACS Omega
,
5
(
43
), pp.
28096
28107
. 10.1021/acsomega.0c03713
30.
Ping
,
P.
,
Kong
,
D.
,
Zhang
,
J.
,
Wen
,
R.
, and
Wen
,
J.
,
2018
, “
Characterization of Behaviour and Hazards of Fire and Deflagration for High-Energy Li-ion Cells by Over-Heating
,”
J. Power Sources
,
398
, pp.
55
66
. 10.1016/j.jpowsour.2018.07.044
31.
Wang
,
Q.
,
Huang
,
P.
,
Ping
,
P.
,
Du
,
Y.
,
Li
,
K.
, and
Sun
,
J.
,
2017
, “
Combustion Behavior of Lithium Iron Phosphate Battery Induced by External Heat Radiation
,”
J. Loss Prev. Process Ind.
,
49
, pp.
961
969
. 10.1016/j.jlp.2016.12.002
32.
Bertilsson
,
S.
,
Larsson
,
F.
,
Furlani
,
M.
,
Albinsson
,
I.
, and
Mellander
,
B.-E.
,
2017
, “
Lithium-ion Battery Electrolyte Emissions Analyzed by Coupled Thermogravimetric/Fourier-Transform Infrared Spectroscopy
,”
J. Power Sources
,
365
, pp.
446
455
. 10.1016/j.jpowsour.2017.08.082
33.
Sun
,
J.
,
Li
,
J.
,
Zhou
,
T.
,
Yang
,
K.
,
Wei
,
S.
,
Tang
,
N.
,
Dang
,
N.
,
Li
,
H.
,
Qiu
,
X.
, and
Chen
,
L.
,
2016
, “
Toxicity, a Serious Concern of Thermal Runaway From Commercial Li-ion Battery
,”
Nano Energy
,
27
, pp.
313
319
. 10.1016/j.nanoen.2016.06.031
34.
Koch
,
S.
,
Fill
,
A.
, and
Birke
,
K. P.
,
2018
, “
Comprehensive gas Analysis on Large Scale Automotive Lithium-Ion Cells in Thermal Runaway
,”
J. Power Sources
,
398
, pp.
106
112
. 10.1016/j.jpowsour.2018.07.051
35.
Chen
,
M.
,
Ouyang
,
D.
,
Weng
,
J.
,
Liu
,
J.
, and
Wang
,
J.
,
2019
, “
Environmental Pressure Effects on Thermal Runaway and Fire Behaviors of Lithium-ion Battery with Different Cathodes and State of Charge
,”
Process Saf. Environ. Prot.
,
130
, pp.
250
256
. 10.1016/j.psep.2019.08.023
36.
Chen
,
M.
,
Liu
,
J.
,
He
,
Y.
,
Yuen
,
R.
, and
Wang
,
J.
,
2017
, “
Study of the Fire Hazards of Lithium-ion Batteries at Different Pressures
,”
Appl. Therm. Eng.
,
125
, pp.
1061
1074
. 10.1016/j.applthermaleng.2017.06.131
37.
Chen
,
M.
,
Liu
,
J.
,
Lin
,
X.
,
Huang
,
Q.
,
Yuen
,
R.
, and
Wang
,
J.
,
2016
, “
Combustion Characteristics of Primary Lithium Battery at Two Altitudes
,”
J. Therm. Anal. Calorim.
,
124
(
2
), pp.
865
870
. 10.1007/s10973-015-5219-3
38.
Fu
,
Y.
,
Lu
,
S.
,
Li
,
K.
,
Liu
,
C.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2015
, “
An Experimental Study on Burning Behaviors of 18650 Lithium Ion Batteries Using a Cone Calorimeter
,”
J. Power Sources
,
273
, pp.
216
222
. 10.1016/j.jpowsour.2014.09.039
39.
Fu
,
Y.
,
Lu
,
S.
,
Shi
,
L.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2018
, “
Ignition and Combustion Characteristics of Lithium ion Batteries Under Low Atmospheric Pressure
,”
Energy
,
161
, pp.
38
45
. 10.1016/j.energy.2018.06.129
40.
Xie
,
S.
,
Ren
,
L.
,
Yang
,
X.
,
Wang
,
H.
,
Sun
,
Q.
,
Chen
,
X.
, and
He
,
Y.
,
2020
, “
Influence of Cycling Aging and Ambient Pressure on the Thermal Safety Features of Lithium-Ion Battery
,”
J. Power Sources
,
448
, pp.
1181
1189
. 10.1016/j.jpowsour.2019.227425
41.
Chow
,
W. K.
, and
Han
,
S. S.
,
2011
, “
Heat Release Rate Calculation in Oxygen Consumption Calorimetry
,”
Appl. Therm. Eng.
,
31
(
2–3
), pp.
304
310
. 10.1016/j.applthermaleng.2010.09.010
42.
Golubkov
,
A. W.
,
Fuchs
,
D.
,
Wagner
,
J.
,
Wiltsche
,
H.
,
Stangl
,
C.
,
Fauler
,
G.
,
Voitic
,
G.
,
Thaler
,
A.
, and
Hacker
,
V.
,
2014
, “
Thermal-runaway Experiments on Consumer Li-ion Batteries with Metal-Oxide and Olivin-Type Cathodes
,”
RSC Adv.
,
4
(
7
), pp.
3633
3642
. 10.1039/C3RA45748F
43.
Eshetu
,
G. G.
,
Bertrand
,
J.-P.
,
Lecocq
,
A.
,
Grugeon
,
S.
,
Laruelle
,
S.
,
Armand
,
M.
, and
Marlair
,
G.
,
2014
, “
Fire Behavior of Carbonates-Based Electrolytes Used in Li-ion Rechargeable Batteries with a Focus on the Role of the LiPF6 and LiFSI Salts
,”
J. Power Sources
,
269
, pp.
804
811
. 10.1016/j.jpowsour.2014.07.065
You do not currently have access to this content.